Set 282019
 

Si parla sempre più di mobilità, di sostenibilità, di rispetto dell’ambiente e anche le nazioni stanno agendo in questa direzione, soprattutto la Comunità Europea con una serie di interventi volti a limitare al massimo e nel modo più rapido possibile, fenomeni inquinanti.

Diverse sono le tecnologie in ballo per poter sostituire il motore endotermico a benzina o gasolio per intenderci. Ma quale tecnologia si affermerà sul mercato e quando questo cambiamento potrà realmente avvenire?

Le tecnologie in gara per sostituire il motore endotermico, sono due: quelle che utilizzano batterie elettriche e quelle che utilizzano celle a idrogeno. Ma riuscire a capire, qual è la migliore tra le due è piuttosto complesso e in ogni caso, questo, prevede analisi di lungo periodo, cioè proiettate nel tempo quando saranno disponibili non solo un numero sufficiente di autovetture in circolazione, ma anche sistemi di ricarica e rifornimento sufficienti a soddisfare la richiesta.

Gli analisti della società Horváth&Partners hanno tentato di rispondere a questa domanda attraverso la pubblicazione di uno studio intitolato “Automotive Industry 2035 Forecasts for the Future” nel quale si ipotizzano differenti scenari che potrebbero verificarsi nei prossimi anni in base ai dati raccolti che mostrano come l’industria dell’automobile si sta muovendo.

Nello studio, ciò che emerge è che esisteranno due differenti fasi temporali una che durerà fino al 2023 al massimo 2025, catalizzata dagli sforzi dei costruttori per realizzare autovetture a emissioni zero e rispettose dei rigidissimi standard di sicurezza e sostenibilità che, faranno lievitare evidentemente i costi. Una seconda fase, che si concluderà intorno al 2035 in cui le auto di nuova generazione sostituiranno quelle vecchie con motori endotermici per due motivi. Il primo è che queste ultime diverranno più care di quelle elettriche a causa dell’introduzione degli standard Euro7 e della tassazione della CO2 con incremento del costo dei combustibili fossili e dall’altro il progresso della tecnologia che renderà il prezzo delle macchine di nuova generazione molto più basso e competitivo.

Schema auto a motore elettrico

Un altro dei fattori che favoriranno lo sviluppo e la diffusione di queste autovetture, sono i costi in meno che ciascuno di noi dovrà affrontare non soltanto dal punto di vista del carburante la cui differenza è sensibile visto che si calcola un risparmio attuale tra i 40o e i 600 euro di carburante/anno, ma anche il risparmio di manutenzione perché questo tipo di autovettura non ha bisogno di sostituzioni di olii e filtri per cui è soggetta a minori interventi manutentivi.

Schema auto a celle di combustibile

I limiti all’attuale diffusione di queste auto rispetto a quelle attualmente in circolazione è dovuta ad una serie di fattori concatenati. La durata delle batterie, la mancanza di un numero sufficiente di colonnine di ricarica, i tempi di ricarica delle stesse. Inoltre la produzione dell’elettricità di queste auto, oggi, non si può dire assolutamente verde, ma essendo prodotta anche da fonti non rinnovabili è anch’essa fonte di inquinamento. Lo studio ha messo in evidenza che, un’auto elettrica oggi produce meno CO2 di un’auto endotermica solo dopo aver percorso 100.000 km, ma anche questo dato è soggetto a cambiare rapidamente nei prossimi anni.

Lo studio, infine, cerca di analizzare i dati per capire quale, tra le due tecnologie, è la migliore cioè quella che probabilmente avrà maggiore diffusione nell’immediato futuro. Le auto a batteria elettrica hanno una maggiore efficienza globale tra il 70 e l’80%, mentre quelle a idrogeno tra il 25 il 35%. Questo è dovuto ai costi di produzione e trasformazione, nonché nel trasporto dell’energia dalla fonte alle batterie. Si conclude che i vantaggi della cella combustibile vengono dall’autonomia e dalla velocità di rifornimento, ma sono meno efficienti e più costose quindi attualmente per percorrere circa 100 km di strada servono tra i 9 e i 12 euro per un’auto a celle e tra i 2 e i 7 euro per una elettrica. Tutto ovviamente potrà essere cambiato o sovvertito se nuove tecnologie e nuove scoperte modificheranno il panorama attuale da qui al prossimo decennio.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Giu 122019
 

L’ennesima soluzione per realizzare batterie ecologiche, a basso costo e durature giunge dai ricercatori dell’Università americana di Purdue, nell’Indiana i quali hanno presentato i risultati di una loro ricerca piuttosto singolare.

Gli scienziati sono partiti da un materiale poco riciclabile ma altamente inquinante come il polistirolo, le palline bianche che servono per imballaggio e per l’isolamento. Solo per il 10% viene riciclato mentre il resto finisce nelle discariche con gravi problemi per lo smaltimento e soprattutto per l’ambiente, vista la quantità di sostanze chimiche contenute in questo materiale capace di provocare grave inquinamento all’ecosistema.

Con la loro ricerca, gli scienziati Vinodkumar Etacheri e i ricercatori guidati da Vilas Pol, sono riusciti a trasformare questo materiale da imballaggio in micro fogli e nano-particelle di carbonio e li hanno testati come anodi delle batterie all’ioni di litio ricaricabili. Il risultato è stato incredibile. Questi elettrodi sono risultati migliori di quelli attualmente in commercio realizzati in grafite.

Utilizzo di questo materiale porterebbe con sé due vantaggi: da un lato eliminare materiale inquinante riciclandolo al 100%, dell’altro realizzare batterie altamente efficienti. Gli studi sono talmente a buon punto che, molto probabilmente, queste batterie potrebbero arrivare già sul mercato tra meno di due anni.

GUARDA I VIDEO:

GUARDA I VIDEO:
Apr 242019
 

Uno dei più grandi ostacoli alla diffusione dell’auto elettrica, attualmente è il problema dell’autonomia, ossia la durata con carica singola per le batterie montate all’interno di queste autovetture.

Kia E-Niro

Attualmente la Kia E-Niro è l’unica in grado di percorrere 440 km senza la ricarica ma questo è solo un aspetto del problema; l’altro è la diffusione delle colonnine di ricarica e l’impossibilità, quindi, di fare rifornimento tra una tappa e l’altra. Inoltre, quello accaduto ultimamente a una a Tesla, il cui video è diventato virale in rete, cioè l’esplosione dell’autovettura posteggiata in un garage, è il secondo problema legato all’uso delle batterie elettriche per le autovetture. Le batterie al litio hanno, purtroppo, un alto grado di infiammabilità e questo può essere un problema in molti casi soprattutto in caso di incidente o di parcheggio all’interno di un’autorimessa.

Continuamente si legge di innovazioni e di cambiamenti tecnologici che permetteranno di ottenere batterie più efficienti, più durature e soprattutto più sicure. L’ultima innovazione è stata proposta dalla società Svizzera con sede a Basilea, la Innolith la quale è specializzata nella realizzazione di batterie ricaricabili a elettroliti inorganici che, ha affermato in questi giorni di aver sviluppato la prima batteria ricaricabile da 1000 Wh/Kg al mondo.

Prende il nome di Energy Battery e promette di alimentare un veicolo elettrico per oltre 1000 km con una singola ricarica riducendo drasticamente i costi sia per l’assenza di materiali preziosi e costosi e soprattutto per l’elevata densità energetica del sistema. Inoltre, ed è cosa non trascurabile, e la prima batteria al litio non infiammabile destinata a veicoli elettrici.

Inoltre, viene spiegato dal produttore che, la densità all’interno di ogni cella di queste batterie e di gran lunga superiore ad ogni altra batteria in commercio e quindi con grandi prospettive di sviluppo soprattutto l’assenza di sostanze organiche eliminando il problema della sicurezza per questo tipo di batterie.

La Energy Battery sarà disponibile inizialmente per un programma pilota in Germania ma poi, tramite diverse partnership sarà data in licenza ad altre aziende che si occupano di automotive. Pare che il completamento dello sviluppo per la commercializzazione richiederà comunque ancora dai 3 ai 5 anni.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Apr 152019
 

Come era prevedibile, passano i giorni e i mesi e cominciano a vedersi i primi risultati, le prime applicazioni concrete del “wonder material“, il grafene. Per la prima volta un gruppo di ricerca della Columbia University, guidato da Young Duck Kim, è riuscito a realizzare una lampadina a base di grafene la cui luce viene generata da un filamento di dimensione mono atomica. Questo significa che è stata progettata e realizzata la più piccola lampadina mai costruita dall’uomo.

Questo studio apre degli incredibili risvolti dal punto di vista dei dispositivi elettronici e di comunicazione. Lo scopo è quello di implementare fonti di luce infinitesimali all’interno di chip in silicio, cioè quelli utilizzati nei processi di computer, che utilizzino la luce anziché l’elettricità per processare le informazioni il che, comporterebbe un notevole incremento nella velocità e nella quantità di dati trattabile nell’unità di tempo.

Si tratta di un lavoro in collaborazione tra l’università americana e due gruppi accademici coreani il Seoul National University e il Korea Research Institute of Standards and Science che, hanno sviluppato questa nuova tecnologia. In pratica si tratta di filamenti di grafene attaccati ad elettrodi metallici, ma la cosa straordinaria è che non sono appoggiati sul chip di silicio, bensì sospesi al suo interno. Questi filamenti mono-atomici di grafene possono scaldarsi fino a 2500°C di temperatura, la metà di quella della superficie del Sole generando così una luce visibile a occhio nudo nonostante le dimensioni praticamente invisibili della fonte.Finora non era stato possibile raggiungere questi risultati perché nessun materiale di questa dimensione era stato in grado di sopportare tali temperature. Il grafene invece non solo alla capacità di resistere a questo elevatissimo calore e di concentrarlo solo nella parte centrale il foglio senza così  toccare gli elettrodi metallici che potrebbero fondere, ma anche di condurre l’elettricità contemporaneamente. Inoltre il fatto che il grafene sia sospeso e non appoggiato sul materiale, migliora di circa 1000 volte l’efficienza.L’altra cosa incredibile, è che la lunghezza d’onda di questa luce può essere variata in base alla posizione in cui è sospeso il foglio di grafene, permettendo così di regolarne anche l’intensità.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Apr 042019
 

Che gli eliostati potessero servire anche per illuminare gli spazi chiusi, è l’originalissima e vincente idea venuta agli ideatori di Solenica, una start Up tutta italiana che ha realizzato il progetto Lucy.

L’idea è semplicissima, quella di una di uno specchio smart capace di riflettere la luce del sole all’interno degli appartamenti in modo tale da procurare una sufficiente illuminazione a svolgere qualunque tipo di lavoro durante tutte le ore del giorno. Questo comporterà un enorme risparmio sulla bolletta elettrica perché non sarà più necessario accendere le luci.

L’idea è stata proposta dal gruppo sulla piattaforma di crowfunding Indiegogo e speravano di raccogliere 50.000 dollari in 30 giorni. Ma sorprendentemente, in poche ore il risultato è stato superato e in due giorni sono stati raccolti 140.000 dollari. L’idea è nata dalla creatività e ingegno di Mattia Di Stasi 24 anni e Diva Tommei 32 enne ex dottoranda in bioinformatica a Cambridge.

Lucy è uno specchio dal design molto curato, italiano, capace e attraverso l’uso di una speciale elettromeccanica alimentata anch’essa a energia solare di muoversi seguendo la direzione del Sole e riflettendo la luce all’interno degli ambienti in maniera tale da consentire una intensa illuminazione. Basta semplicemente posizionare Lucy all’esterno, in un posto molto soleggiato.

Lucy dispone di uno specchio che ruota ricostruendo la posizione del Sole nel cielo e inseguendolo in ogni momento durante tutte le ore del giorno, riuscendo così a mantenere lo stesso punto sempre illuminato con una intensità pari a cinque lampadine alogene da 100 W ciascuna, quindi, abbondantemente sufficiente per qualunque spazio abitativo.

I giovani fondatori della startup affermano di voler mantenere il progetto all’interno del made in Italy e di non volersi fermarsi a questo prodotto ma di aver già pensato a diverse versioni di Lucy destinate ad interi edifici o addirittura a luoghi all’aperto.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Mar 252019
 

A causa dei cambiamenti climatici dovuti allo smog, alle emissioni di CO2 nell’atmosfera, i fenomeni atmosferici stanno diventando sempre più violenti e intensi. Normalmente, a causa della differenza di temperatura tra l’acqua e l’aria, si sviluppano grandi vortici d’aria che prendono il nome di uragani se si sviluppano sull’Oceano Atlantico, o tifoni se, invece, si sviluppano sull’Oceano Pacifico.
L’idea di poter controllare questa immane potenza, con venti che superano i 300 km/h, tra le forze della natura una delle più devastanti capace di lasciare dietro di se una scia di distruzione e morte, è venuta all’ingegnere giapponese Atsushi Shimizu. Il Giappone si sa, è terra soggetta ogni anno all’azione di questi impetuosi venti. Egli ha ideato una nuova turbina eolica capace di sfruttare questi violentissimi venti di burrasca senza subire danni.

I suoi studi nascono dall’essersi reso conto che per anni il Giappone utilizzato turbine classiche non adatte ovviamente a zone geografiche dove si formano tifoni e quindi dove i venti sono troppo violenti per poter essere sopportati da queste fragili strutture. Nel 2013 lasciò la società per cui lavorava e ha fondato una start-up chiamata Challenergy aggiudicandosi un finanziamento per realizzare la prima turbina a prova di tifone.

I suoi studi sono partiti dall’osservazione delle turbine ad asse verticale, indifferenti alla velocità del vento e capaci di sopportare sollecitazioni molto superiori a quelle tollerate dalle turbine classiche.
Il principio su cui è fondata questa nuova turbina oltre che, ad essere imperniata su un asse verticale, è quello di adottare il cosiddetto effetto Magnus. Di cosa si tratta? E’ un effetto fisico che riguarda il moto dei corpi nell’aria. Se ad un corpo che si muove nell’aria viene aggiunta una rotazione iniziale, questa induce il corpo a deviare dalla trattoria parabolica che stava seguendo. Per fare un esempio immaginiamo un pallone da calcio che viene calciato dall’angolo e in aria devia secondo una curva che lo conduce verso il palo esterno della porta. A conferire questa curvatura non è la spinta iniziale (il calcio), bensì la rotazione data alla palla quando viene colpita. Questa componente rotazionale devia verso la traiettoria della palla che, non segue più un moto rettilineo, bensì uno curvilineo.

Shimizu, ha incorporato l’effetto Magnus all’interno di questa struttura. L’aerogeneratore creato dalla Challenergy, sostituisce le tre pale con tre cilindri rotanti verticali dotati di una pinna collegati a un montante centrale in modo da rendere la struttura più resistente e assorbire meglio la velocità di rotazione dei cilindri. Nei test effettuati si è potuta verificare un’efficienza del 30% che ancora non raggiunge il 40% di quella degli aerogeneratori tradizionali, ma è già un grande passo avanti perché lavorano in condizioni proibitive per gli altri. Obiettivo della start-Up è quello di ottimizzare questa resa.
Secondo l’Atlantic Oceanographic & Meteorological Laboratory, un tifone nel pieno della sua forza è in grado di generare energia cinetica capace di fornire circa la metà dell’energia elettrica prodotta da tutto il mondo quindi, se Shimizu riuscirà a imbrigliare questi venti, riuscirà a fornire energia a tutto il Giappone per oltre cinquant’anni.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Dic 072018
 

Fino a questo momento uno dei più grandi problemi dei cellulari moderni è stata la durata della loro batteria. Dopo al massimo 24 ore questa, per quanto nuova, dovrà necessariamente essere ricaricata, pena l’impossibilità di utilizzare il dispositivo.

Una ricerca, attualmente in corso da parte del Jet Propulsion Laboratory e dell’Istituto di Tecnologia della California (Caltech), per conto della NASA, sta sperimentando l’utilizzo del fluoruro, come carica negativa all’interno delle batterie per i dispositivi mobili. Dai risultati sperimentali, è risultato un sistema capace di durare otto volte più lungo delle batterie a ioni di litio attuali.

Il problema sorge nell’utilizzo di questo materiale che risulta essere difficile da lavorare e molto corrosivo oltre che reattivo. Il professor Robert Grubbs, Premio Nobel per la chimica nel 2005 che si sta occupando della ricerca, spiega che i primi risultati sono molto positivi e promettenti anche se c’è ancora molta strada da fare.

Altre volte si era tentato di utilizzare il fluoruro in combinazione con componenti solide, ma questo connubio funzionava solo a temperature elevate rendendo inutilizzabili tali sistemi.

Questa volta è la prima volta che una batteria al fluoruro ricaricabile riesce funzionare a temperatura ambiente. Queste batterie funzionano spostando atomi carichi chiamati ioni dal polo positivo a quello negativo e viceversa per la ricarica. Il professor Jones Simon che ha partecipato al progetto, ha affermato di aver ottenuto risultati positivi dello spostamento di atomi di fluoro carichi negativamente. Ciò che ha permesso di raggiungere questo incredibile risultato, cioè di far spostare gli ioni di fluoro a temperatura ambiente, è stato un nuovo liquido chiamato BTFE capace di mantenere il fluoruro stabile.

PUOI LEGGERE ANCHE:
Ott 122018
 

Le celle a combustibile sono dispositivi elettrochimici capaci di convertire l’energia chimica direttamente in energia elettrica. La loro scoperta è del 1839 anche se gli sviluppi maggiori si sono avuti in epoca recente grazie alle missioni spaziali, dove sono state ritenute il miglior sistema per l’alimentazione elettrica a bordo delle navicelle.

Purtroppo la loro affermazione è stata ostacolata da un costo altissimo dovuto all’uso del platino, uno dei metalli preziosi presenti sulla Terra utilizzato in grande quantità in queste batterie come catalizzatore.

Oggi, però, grazie ad uno studio congiunto dell’Università di Stanford e della casa automobilistica tedesca Volkswagen, forse questo ostacolo è stato definitivamente superato.

Le particelle di platino, sono distribuite su una polvere di carbone ma il processo catalitico avviene solo sulla loro superficie rendendo inutile gran parte del materiale utilizzato.

Il processo innovativo sviluppato in questa ricerca, consente di collocare atomi di platino sulla superficie di carbone in particelle molto piccole. In questo modo la quantità di platino utilizzata è molto meno di quella adoperata fino ad oggi abbassando notevolmente i costi migliorando sensibilmente l’efficienza del catalizzatore e la sua resistenza.

La ricerca coinvolge anche la Volkswagen perché impegnata grandemente nello sviluppo di nuove soluzioni per batterie per le auto elettriche.

Da questa ricerca, trarranno vantaggio, secondo i ricercatori, non solo le celle a combustibile, ma anche le batterie convenzionali come quelle a ioni di litio.

Thomas Schladt del Dipartimento di Ricerca del Gruppo Volkswagen, ha evidenziato come questa nuova tecnologia ALD a deposito di strato atomico (atomic layer deposition), porterà i sistemi di produzione di energia ad un altro livello. Infatti, le celle a combustibile, sono ad emissioni zero ed inoltre presentano grandi vantaggi sia rispetto ai motori con batterie elettriche che a quelli a combustione interna classici. I vantaggi derivano dall’efficienza, dall’autonomia e dal tempo di ricarica. Le auto a celle di combustibile sono in tutto e per tutto paragonabili alle auto attuali a combustione interna con il vantaggio, però, di emettere solo acqua e calore. L’abbassamento dei costi e l’aver reso il processo più efficiente dovrebbe portare a una maggiore diffusione e un’affermazione sul mercato di questo sistema di propulsione. I ricercatori, adesso saranno impegnati nel trasferire questi risultati dalla fase sperimentale a quella applicativa.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Ott 032018
 

Smart, smart, smart. Tutto diventa più intelligente, le nostre case, le nostre città, i nostri elettrodomestici. L’Internet of Things, ossia l’Internet delle Cose, l’Intelligenza Artificiale, i sistemi di comunicazione evoluti stanno cambiando radicalmente il nostro approccio con le cose, con gli oggetti della nostra quotidianità.

Ormai cercare una strada è un’operazione che svolgiamo automaticamente, senza rifletterci, con il nostro smartphone attraverso una richiesta all’assistente vocale, ordinare al televisore di cambiare canale semplicemente parlando è quasi scontato, parcheggiare l’auto mentre sensori e telecamere ci guidano in questa operazione è quotidianità. E nel prossimo futuro sarà ancora meglio perché lo sviluppo della rete di quinta generazione consentirà un salto in avanti difficilmente immaginabile.

Grazie al lavoro di una startup americana chiamata Totem Power, è nato un evolutissimo concept di illuminazione urbana. Totem, non può essere definito un semplice palo della luce, ma è uno strumento multifunzione capace di andare ben oltre il suo compito principale.

Totem è un hub digitale, dotato di molta tecnologia. E’ una “smart utility” nel senso che consentirà di connettere le nostre città in maniera molto più efficiente. L’idea è semplice. Dover interconnettere tutta la città è un’operazione piuttosto lunga e complessa. I lampioni della luce sono già ovunque, quindi prevedere una loro sostituzione o predisposizione in caso di nuova installazione potrebbe far risparmiare molto denaro all’amministrazione pubblica.

In pratica, Totem, è un oggetto di design molto ben pensato. Oltre alla classica funzione di illuminazione, è dotato di sensori che lo rendono intelligente, ossia rileva il flusso di traffico riducendo la propria potenza fino al 50% in caso di traffico scarso o nullo in modo da ottimizzare i consumi elettrici.

La parte superiore è invece ricoperta di celle fotovoltaiche in grado di raccogliere i raggi solari e all’interno della sua struttura sono dislocate una serie di accumulatori di elettricità, che garantiscono il suo funzionamento anche in assenza della rete elettrica per interruzione o guasto. Inoltre, l’energia accumulata farà da colonnina di ricarica per le auto elettriche.

Il sistema wi-fi e 4G di comunicazione interno, consentirà a Totem di svolgere la funzione di sensore per la raccolta dei big data che l’amministrazione potrà utilizzare per evidenziare problemi o criticità e predisporre piani di intervento nel più breve tempo possibile. Totem, creerà una vera e propria rete di comunicazione che, ad esempio, registrerà il livello di traffico intervenendo sulla rete stradale e deviandolo quando necessario su percorsi alternativi.

Il primo modello sarà commercializzato la prossima estate e sarà dotato di un panello fotovoltaico da 5 kw, un sistema di batteria da accumulo da 44 chilowattora e un caricabatterie per veicoli elettrici.

Totem integrerà anche il sistema di comunicazione wi-fi e 4G in un design moderno e innovativo, capace anche di valorizzare esteticamente le aree in cui verrà installato.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Lug 152018
 

Che l’idrogeno consenta concentrazioni di energia maggiori della benzina o del gasolio, è noto, ma il problema è che la sua estrazione comporta ancora costi elevati e grossi problemi per la sicurezza. Infatti, l’idrogeno per poter essere utilizzato, deve essere compresso allo stato liquido con enormi rischi di esplosione e processi molto costosi, fattori che hanno rallentato se non fermato del tutto lo sviluppo delle auto dotate di questo tipo di alimentazione.

Arriva adesso dalla Svizzera, dalla società GRT group e dal Politecnico di Losanna, una soluzione denominata HyForm-PemFc, che sfrutta l’acido formico per l’estrazione dell’idrogeno. L’acido formico è una concentrazione di idrogeno e anidride carbonica e rispetto a tanti altri componenti presenta una maggiore facilità nell’estrazione e nello stoccaggio dell’idrogeno.

Molti hanno tentato questa strada, ma per la prima volta, l’HyForm-PemFc, ha consentito di raggiungere elevati livelli di efficienza. La macchina creata in Svizzera consente già adesso di produrre circa 7 mila kilowatt all’ora di energia con un’efficienza del 45%, valore che fa ben sperare nelle auto alimentate all’idrogeno, perché questo sistema consente di produrne di nuovo durante il suo uso permettendo la realizzazione di auto totalmente green e autosufficienti all’infinito.

Il sistema del GRT Group, consente di trasformare l’acido formico in idrogeno utilizzando basse temperature e con dispendio di energia minimo.

La batteria così realizzata permette la fornitura di energia, sia per uso industriale che domestico, per lunghi periodi anche in zone isolate e desertiche, senza dover predisporre centrali o altri sistemi di alimentazione. Il sistema consente, inoltre, l’accumulo di energia per usi in altri momenti.

HyForm-PemFc è costituita da due parti principali: un reformer di idrogeno HyForm e una pila a combustibile chiamata PemFc. Il catalizzatore per estrarre l’idrogeno è a base di rutenio, un materiale molto costoso, per cui gli scienziati stanno cercando un sostituto meno caro a questo componente.

Grazie a questo sistema, l’estrazione dell’idrogeno avviene in maniera sostenibile, la pila è al 100% ecologica, silenziosa, emette gas puliti, non emette anidride carbonica, ne particolato e neppure ossidi di azoto. Inoltre, ha ridotte necessità di manutenzione, ha una tecnologia scalabile per cui può essere utilizzata dalla semplice utenza domestica a più complessi e onerosi, in termini di energia, impianti industriali. Non necessita di connessioni a reti elettriche per cui può essere utilizzata anche in luoghi remoti e utilizza appunto l’acido formico che è facile da stoccare, trasportare e maneggiare e si può produrre da fonti sostenibili presenti in enorme quantità nel mondo.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Giu 222018
 

Che la geotermia fosse una delle fonte rinnovabili più importanti e sfruttate negli ultimi anni già lo si sapeva, soprattutto in riferimento alla produzione di energia elettrica attraverso le centrali che necessitano di temperature molto elevate (alta entalpia).

Ma quello che in questi giorni si sta considerando, è lo sfruttamento del calore interno della Terra, però a basse temperature (bassa entalpia). In questo caso non si tratta di produzione di energia elettrica, bensì di sfruttare la possibilità di riscaldare e raffreddare delle abitazioni con l’altissima efficienza delle pompe di calore geotermiche.

Perché geotermia a bassa entalpia? Perché i vantaggi connessi al suo sfruttamento sono molteplici. Innanzitutto è una fonte non inquinante, inesauribile e soprattutto costante non soggetta a variazioni climatiche o ad altri fattori naturali che condizionano invece il vento, il sole o l’acqua. Non è soggetta alla variazione dei prezzi che coinvolge i combustibili fossili, è sempre estraibile, consente un risparmio di esercizio pari all’80% rispetto ad una fonte tradizionale.

Partendo da questi numerosi punti di forza, la geotermia si appresta a ridefinire i criteri energetici di molte nazioni, in primis l’Italia che sorgendo su faglie sismiche ed essendo terra di vulcani, è il luogo ideale dove poter progettare impianti di questo genere. Alcuni studiosi, hanno stimato nel 50% la capacità del geotermico a bassa entalpia di soddisfare i bisogni energetici della nostra nazione. Se a questo aggiungiamo che nell’Agenda 2030 dell’ONU, all’Obiettivo 7 si fissa come criterio fondamentale una aumento considerevole delle quote di energia prodotte con fonti alternative entro quell’anno e che con l’Accordo di Parigi del 2015 sulla riduzione dei gas serra e dell’anidride carbonica sottoscritto da ben 195 Paesi, la geotermia diventa una importantissima fonte di energia.

Lo stesso accordo raggiunto con Agenda 2030 tra i Paesi dell’Unione, stabilisce che entro quell’anno il 32% dell’energia totale prodotta nel territorio dell’Unione Europea dovrà provenire da fonti di energia rinnovabile.

A giugno 2018, giorno 28 si terrà a Roma il convegno nazionale sulla Geotermia a Bassa Entalpia organizzato dal Consiglio Nazionale dei Geologi con lo scopo di fare il punto sulle energie alternative e in particolare quella derivante dal calore della Terra in Italia.

Ma come funziona questa tecnologia? In realtà si tratta di uno scambio di calore, che si traduce in un prelievo di questo durante il periodo invernale e una sua cessione durante il periodo estivo.

Negli impianti geotermici avviene un prelievo di calore dal terreno per conduzione tramite un fluido vettore che circola in un sistema ad una temperatura inferiore a quella del terreno.

Approfondisco: per conduzione si intende il passaggio di energia termica tra sistemi solidi o al loro interno dal corpo a temperatura maggiore a quello a temperatura minore.

E’ possibile sfruttare questo sistema energetico ovunque, tranne in quelle zone dove il calore della Terra è troppo elevato per poter essere gestito in un impianto termico domestico.

Quindi, un impianto di questo tipo è costituito da un sistema di captazione del calore con una sonda geotermica inserita nel sottosuolo ad una profondità variabile dai 70 ai 100 metri, una pompa di calore, un sistema di accumulo del calore e dei sistemi di distribuzione di questo  (riscaldamento e acqua sanitaria) all’interno dell’abitazione.

La sonda di captazione ha la funzione di concentrare il calore disperso per consentirne lo spostamento dal sottosuolo all’impianto durante il periodo invernale e l’opposto durante i mesi estivi. In pratica, il liquido che scorre nella sonda accumula il calore scendendo nel sottosuolo e lo porta in superficie dove la pompa di calore, per evaporazione, sottrae il calore ai tubi e lo trasferisce agli impianti domestici. Nel periodo estivo accade il contrario. Nella sonda scende un fluido caldo che perde calore nel terreno raffreddandosi. Tutto questo può accadere perché nel sottosuolo la temperatura del terreno a quelle profondità è mediamente costante a circa 15°C.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Mag 052018
 

Quante volte ci ritroviamo in casa con multi-rese, fili sparsi ovunque per portare l’elettricità in quel punto nel quale non avevamo previsto la necessità di collegare un qualunque elettrodomestico? Le alternative possibili sono solo due: o chiamare gli operai, far fare gli scassi necessari e passare i fili elettrici o rassegnarci ad avere antiestetici fili che portano l’elettricità dove necessario dalla presa più vicina. Questo fino ad oggi. Grazie ad un sistema brevettato, chiamato Next Tape, dell’omonima società, è possibile intervenire e portare la corrente ovunque senza necessità di fare scassi sulle pareti e senza gli antiestetici fili che corrono lungo le stanze.

Si tratta di un sottilissimo nastro (tape) che si incolla sulla pareti e poi semplicemente con una pitturazione o rasatura del muro scompare alla vista di chiunque. Il sistema, assolutamente sicuro e certificato, è in grado di trasportare fino a 5Kw di potenza e connettere apparecchiature fino a 230 volt, quindi adatto a ogni tipo di elettrodomestico compresi quelli ad alto assorbimento come frigoriferi, condizionatori, forni elettrici.

Ristrutturare i propri ambienti, cambiare la disposizione dei mobili o la funzione di uno spazio, diventerà semplicissimo, senza più costi di muratura, danneggiamenti di parti dell’immobile, rumori di lavori che possono disturbare i vicini e noi stessi. Portare la corrente in ogni punto della casa sarà quindi un gioco da ragazzi e bisognerà solo prevedere la ri-pitturazione dello spazio in cui si è fatto l’intervento.

Il sistema, oltre che essere brevettato, ha superato tutti i test e le certificazioni di sicurezza richieste a livello europeo, come test di isolamento, test di resistenza al fuoco e prova di non propagazione della fiamma, test sulla tensione di esercizio e non da ultima la certificazione TÜV che dichiara la conformità alle più rigide norme di sicurezza.

Grazie a questa ingegnosa innovazione, sarà più semplice e sicuro, modificare, implementare, completare il nostro impianto casalingo intervenendo in modo del tutto indolore, senza sporcare e potendo anche risparmiare sui conseguenti costi di realizzazione. Il prodotto è già in vendita in tutti i paesi europei Italia inclusa.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:

 

Set 172017
 

Abbiamo spesso affrontato come argomento su queste pagine quello delle batterie, della loro durata, della possibilità di essere bio-compatibili e non tossiche per l’ambiente e le persone.

BatteriePulite01

L’uso di determinate sostanze, tipo gli ioni di litio, oltre ad essere altamente inquinanti e pericolose, hanno anche, fino ad ora, limitato fisicamente lo sviluppo delle batterie. Infatti questi materiali, a causa della loro pericolosità, hanno richiesto ai costruttori l’utilizzo di materiali aggiuntivi, resistenti e rigidi che hanno impedito di fatto la creazione di batterie con forme curve o adattabili alle superfici.

Da un team di ricercatori cinesi, è stato pubblicato un nuovo studio che dimostra come sia possibile utilizzare al posto dei materiali tossici e corrosivi attualmente in uso altri prodotti assolutamente compatibili e non dannosi.

Questa nuova soluzione consentirà di creare batterie dalle forme insolite e soprattutto indossabili, ossia inseribili in apparecchi che stanno all’interno del corpo umano. Il team cinese, ha sostituito i nocivi e tossici elettroliti chimici, con sostanze tipo il solfato di sodio cristallino, sostanza che normalmente viene utilizzata nelle soluzioni saline per la coltura delle cellule.

L’essersi liberati dei materiali aggiuntivi di irrigidimento e protezione, ha consentito agli scienziati di realizzare nuove batterie, una con le sembianze di cintura e una con struttura a nanotubi.

Approfondisco: I nanotubi sono strutture tubolari aventi un diametro del tubo che va da qualche nanometro a qualche decina di nanometri. Il prefisso “nano”; nella parola “nanotubo”; indica proprio la dimensione caratteristica del diametro dei tubi.

BatteriePulite02

Il limite di queste nuove batterie, è la resistenza alla piegatura e alle angolazioni. L’uso del solfato di sodio, si è rivelato migliore delle altre soluzioni e alla fine, la batteria-cintura, non è stata influenzata minimamente nelle sue prestazione da centinaia di torsioni e piegature.

Le batterie a nanotubi, invece, si sono rivelate ancora più efficaci, perché gli scienziati hanno scoperto che in queste è possibile accelerare la conversione dell’ossigeno disciolto negli ioni-idrossidi, così da rendere possibile l’assorbimento dei farmaci con maggiore celerità e in punti del corpo non raggiungibili con le procedure conosciute.

PUOI LEGGERE ANCHE: