Giu 172013
 
LA PROSPETTIVA (esteso)
Indice Argomenti
1 CENNI STORICI
2 LA TECNICA
3 LA FIGURA PREPARATORIA
4 PROSPETTIVA CENTRALE O FRONTALE
5 PROSPETTIVA ACCIDENTALE O D’ANGOLO
6 PROSPETTIVA OBLIQUA
7 IL METODO DELLA “X”
8 IL METODO DEI PUNTI DI DISTANZA
M MAPPA CONCETTUALE DELL’ARGOMENTO

Abbiamo visto come con le Proiezioni Ortogonali, riusciamo a rappresentare un oggetto attraverso la sua scomposizione in tre proiezioni da altrettanti punti di vista e di come tale tecnica serva principalmente a descrivere metricamente un oggetto. Abbiamo poi visto come con le Assonometrie riusciamo a dare una rappresentazione tridimensionale rapida e intuitiva dell’oggetto e di come esistano differenti tipi di visualizzazione a seconda di come posizioniamo gli assi di riferimento.

Esiste un’altra tecnica grafica per la rappresentazione dei disegni geometrici che prende il nome di Prospettiva. La prospettiva, altro non è che un artificio geometrico che consente di rappresentare su una superficie piana un oggetto così come appare all’occhio umano. Quindi, tra le tecniche di rappresentazione è quella che consente una visualizzazione degli oggetti più vicina alla realtà.

CENNI STORICI

Prospettiva2I primi esempi dell’uso della prospettiva compaiono nell’arte figurativa romana in modo embrionale, privo di regole e codifiche precise. Si parla più che altro di un tentativo di rappresentazione prospettica basata sulla sensibilità e sull’intuito dell’artista. Una vera e propria rivoluzione della tecnica la si ebbe nel quattordicesimo secolo ad opera dell’artista e architetto Filippo Brunelleschi (1377 – 1446). Con la sua grande maestria e la conoscenza approfondita del disegno tecnico, l’architetto fiorentino adotta per la prima volta il sistema di rappresentazione prospettica a un unico punto di fuga, per cui ne è anche l’inventore. La diffusione di questa tecnica fu rapida e accolta ben volentieri, perché in un’epoca di rinnovamento come il Rinascimento anche le novità nel disegno rappresentavano una svolta in quella direzione.

Proiezione-retteBrunelleschi basò il suo approccio sugli studi di Euclide della percezione visiva, ossia dei raggi luminosi che dall’oggetto si dirigono verso l’osservatore convergendo verso il centro dell’occhio sul piano della retina. Nella teoria formulata da Brunelleschi  i raggi proiettanti sono rette che toccano i vertici degli oggetti che si devono rappresentare, il centro di proiezione è il punto di vista e la retina è il piano di rappresentazione.

Il procedimento geometrico teorizzato da Brunelleschi fu completato e regolamentato da Piero della Francesca, verso la metà 1400. Egli scrisse il trattato “De prospectiva pingendi” che costituisce il primo studio organico della prospettiva con la formulazione di un preciso sistema di leggi e procedimenti matematici.

Dal rinascimento in poi la prospettiva sarà sempre più legata alle ricerca matematica, realizzando un passaggio dalla prospettiva rinascimentale di tipo centrale, a rappresentazioni su di un piano con modalità diverse (accidentale e obliqua). Questa parte della geometria prenderà il nome di Geometria Descrittiva.

Prosp_chiesetta

 TORNA ALL’INDICE

LA TECNICA

ElementiLa prospettiva consente, quindi, di vedere gli oggetti esattamente come li percepisce l’occhio umano. Immaginiamo, quindi, di guardare un oggetto senza muovere la testa e contemporaneamente con tutti e due gli occhi (visione binoculare). Possiamo definire un cono visivo che partendo dall’occhio dell’osservatore includa tutto l’oggetto da osservare. Questo dipende ovviamente dalla dimensione dell’oggetto e dalla distanza dell’osservatore da questo. Dall’esperienza condotta scientificamente, si è dimostrato che l’angolo migliore di apertura del cono visivo deve essere compreso tra i 30° e i 40°. Coni ottici con apertura maggiore generano aberrazioni ottiche simili a quelle che i fotografi ottengono usando un grandangolare come obiettivo per la loro macchina fotografica.

L’altro fattore fondamentale per una buona riuscita della prospettiva è la scelta del punto di vista. E’ facile intuire come sia possibile guardare un oggetto in infiniti modi e di come questo dipenda da tre parametri fondamentali: posizione dell’osservatore, distanza tra l’osservatore e l’oggetto e l’altezza del punto di vista. Ad esempio, nella prospettiva accidentale, l’asse visuale va collocato in corrispondenza della parte dell’oggetto che si vuole evidenziare (ad esempio un lato dell’oggetto piuttosto che un altro).

Per capire come ciò avviene, è necessario definire alcuni elementi base della tecnica prospettica. In pratica si tratta di osservare un oggetto e quindi di definire un osservatore (noi), scegliere l’oggetto da rappresentare, e immaginare di frapporre tra noi e l’oggetto un piano virtuale verticale, come una lastra di vetro trasparente, che rappresenta il piano sul quale disegneremo il nostro oggetto in prospettiva.

Vediamo quali sono gli elementi base della prospettiva:

dis. 1 OSSERVATORE – siamo noi, cioè coloro che osservano l’oggetto da una posizione ben precisa
dis. 2 OGGETTO – qualunque cosa vogliamo rappresentare in prospettiva; viene definita anche figura obiettiva
dis. 3 PIANO DI TERRA (PT) – è il piano orizzontale sul quale è collocato l’osservatore. Rappresenta in parole povere il pavimento sotto i nostri piedi. Si indica con le lettere P e T maiuscole
dis. 4 QUADRO PROSPETTICO (Q) – rappresenta il piano verticale interposto tra l’osservatore e la figura obiettiva; possiamo immaginarlo come una lastra di vetro posta verticalmente tra noi e l’oggetto che vogliamo rappresentare. Si indica con la lettera Q maiuscola
dis. 5 LINEA DI TERRA (LT) – rappresenta la linea di intersezione tra il piano di terra PT dove è poggiato l’osservatore e il piano di quadro prospettico Q.  Si indica con le lettere L e T maiuscole
dis. 6 PUNTO DI VISTA (PV) – rappresenta il punto dal quale guardiamo l’oggetto; quindi sono i nostri occhi. Si indica con le lettere P e V maiuscole
dis. 7 PUNTO DI STAZIONE (PS) – rappresenta il punto esatto sul piano di terra PT dove si trova l’osservatore. Quindi il punto nel quale poggiamo i nostri piedi. Si indica con le lettere P e S maiuscole
dis. 8 ALTEZZA (h) – rappresenta la distanza tra il punto di vista dell’osservatore PV e il punto di stazione PS dell’osservatore stesso. Si indica con la lettera h minuscola
dis. 9 RAGGI VISUALI – rappresentano tutte le rette virtuali che collegano il punto di vista, ossia l’occhio dell’osservatore, con tutti gli spigoli dell’oggetto da rappresentare
dis. 10 PUNTO PRINCIPALE (PP) – rappresenta il punto in cui l’asse visivo ortogonale che parte dall’occhio dell’osservatore, incontra il quadro prospettico Q. Si indica con le lettere PP maiuscole
dis. 11 LINEA DI ORIZZONTE (LO) – rappresenta la linea di intersezione tra il piano orizzontale parallelo al piano di terra passante per l’occhio dell’osservatore (PV). e il quadro prospettico Q. La linea di orizzonte varia al variare dell’altezza dell’osservatore. Si indica con le lettere L e O maiuscole
dis. 12 PUNTO DI DISTANZA (PD) – rappresenta la distanza del punto di vista PV dal piano di quadro Q. Serve a facilitare le rappresentazioni grafiche e si riporta a destra o a sinistra del Punto Principale PP sulla Linea di Orizzonte LO. Si indica con le lettere P e D maiuscole

 TORNA ALL’INDICE

LA FIGURA PREPARATORIA

In molti casi, la realizzazione di una prospettiva corretta, richiede la preparazione di un disegno che rappresenti in vista dall’alto (pianta) l’oggetto da rappresentare e sul quale siano note e indicate le dimensioni dell’oggetto stesso. Questo disegno prende il nome di figura preparatoria. La realizzazione di questa figura, su foglio a parte o su un angolo dello stesso foglio, permette di realizzare una prospettiva in modo più semplice e diretto, e in molti casi anche in scala diversa generalmente più grande. Per cui, la figura preparatoria, rappresenta in molti casi un grande vantaggio nella realizzazione della prospettiva.

Figura-preparatoria

Prospettiva con figura preparatoria di un Triangolo Equilatero

Sulla base delle teorizzazioni sviluppate da allora, possiamo dire che esistono tre tipi di rappresentazione prospettica che variano in base alla posizione che l’oggetto assume rispetto a un piano di proiezione detto quadro. Per cui avremo:

  • prospettiva centrale o frontale; l’oggetto da disegnare è parallelo al piano di proiezione. Tutte le linee di profondità (lunghezza) convergono nello stesso punto (punto di fuga proprio), le linee parallele al quadro (larghezza) restano parallele, le rette verticali (altezza) restano verticali;
  • prospettiva accidentale o d’angolo; l’oggetto rappresentato è ruotato rispetto al quadro e nessuno dei suoi lati è a questo parallelo, vi sono così due punti di fuga in cui convergo le linee orizzontali (larghezza e lunghezza), ma le rette verticali (altezza) restano verticali;
  • prospettiva obliqua o razionale o a quadro inclinato; l’oggetto rappresentato è ruotato rispetto al quadro di proiezione anche verticalmente, vi sono così tre punti di fuga, due per le linee orizzontali (larghezza e lunghezza) ed uno per quelle verticali (altezza).

 TORNA ALL’INDICE

PROSPETTIVA CENTRALE O FRONTALE

Prospettiva-CentraleCome detto precedentemente, nella prospettiva centrale, la posizione del piano di quadro Q è sempre parallela a un lato della figura o a un lato del quadrato o rettangolo che la contiene. Le rette parallele al quadro restano parallele anche in prospettiva e le rette verticali restano tali anche in prospettiva.

L’operazione preliminare per la prospettiva centrale, è la definizione in proiezione ortogonale delle dimensioni della figura. Bisogna quindi disegnare una figura preparatoria che prevede i seguenti passaggi:

disegnare la pianta della figura da rappresentare in prospettiva della quale, ovviamente, bisogna conoscere le dimensioni corrette;

costruire il piano di quadro (Q) in posizione parallela ad uno dei lati della figura;

si posiziona il punto di vista (PV) a una distanza tale che la figura rientri completamente nel cono visivo (normalmente una visuale con angolo di apertura non superiore ai 35° e in una posizione tale che l’asse visivo passi all’interno della figura, nel suo centro o vicino a questo;

si ribalta il punto di vista PV sulla linea di orizzonte LO individuando il punto di distanza PD;

si ribaltano i punti utili alla definizione della prospettiva sul lato opposto a PD tracciando delle rette inclinate a 45°.

Nella prospettiva centrale si possono utilizzare diversi metodi per ottenere l’immagine desiderata. Quelli più utilizzati sono:

Il metodo dei raggi visuali;

Il metodo del prolungamento dei lati;

Il metodo dei punti di distanza;

Il sistema del ribaltamento.

 TORNA ALL’INDICE

PROSPETTIVA ACCIDENTALE O D’ANGOLO

Prospettiva-AccidentaleNella prospettiva accidentale,come detto, il piano di quadro Q non è parallelo ai lati dell’oggetto da rappresentare. La disposizione del piano dipende dall’effetto prospettico che si vuole ottenere. Una buona prospettiva si ottiene disponendo il quadro, nella figura preparatoria, con inclinazioni di 30° o 60° rispetto ai lati del rettangolo che contiene l’oggetto. E’ importante che l’angolo minore stia dal lato più importante della costruzione, cioè quello che vogliamo mettere in evidenza nella rappresentazione.

La scelta del punto di vista è importantissima per una buona riuscita del disegno. Anche in questo caso la sua posizione è arbitraria ma è consigliabile posizionare PV a una distanza tale che l’angolo formato tra i raggi visuali r’ ed r” (i raggi che da PV vengono diretti verso gli estremi della figura rappresentata in pianta), sia minore di 45°. In questo modo, i raggi visuali staranno all’interno del cono ottico e quindi l’immagine risultante sarà percettivamente corretta, quindi senza aberrazioni ottiche.

Nella prospettiva accidentale si possono utilizzare diversi metodi per ottenere l’immagine desiderata. Quelli più utilizzati sono:

Il metodo dei raggi visuali;

Il metodo dei punti di distanza;

Il metodo dei punti di fuga e delle perpendicolari al quadro;

Il metodo dei punti misuratori.

 TORNA ALL’INDICE

PROSPETTIVA OBLIQUA

In questo caso, pure il Piano di Quadro Q è inclinato rispetto all’oggetto per cui anche le facce verticali dell’oggetto avranno un punto di fuga. Possiamo scegliere se il Piano di Quadro debba essere inclinato verso l’oggetto o verso l’osservatore.

Piano-di-Quadro-verso-osservatorePiano-di-Quadro-verso-oggetto

La prospettiva che si ottiene si chiamerà di conseguenza, prospettiva razionale dall’alto o prospettiva razionale dal basso. Questa prospettiva presenta maggiori difficoltà esecutive in confronto ai casi precedenti, per cui è raramente utilizzata. Inoltre il quadro può essere esterno, tangente o secante l’oggetto da rappresentare. Nel caso in cui sia secante, il quadro funge anche da Piano di Sezione come avviene negli spaccati prospettici.

Altro parametro da modificare che ci consente di ottenere differenti visualizzazioni dell’oggetto, è la quota del punto di vista PD rispetto all’oggetto da rappresentare. Quindi, potremo avere differenti visualizzazioni:

dal sotto in su, quando il punto di vista ha quota negativa, ossia quando viene posto più in basso della Linea di terra LT;

dal basso, quando il punto di vista è molto vicino alla Linea di terra LT fino a giacere su di essa. Avremo una prospettiva a raso terra, nella quale di conseguenza la linea di orizzonte coincide con la linea di terra;

ad altezza uomo, quando il punto di vista viene disposto a una quota variabile fra i 150 e 170 centimetri da terra. Questa rappresentazione ci consente di vedere gli oggetti come ci appaiono normalmente;

dall’alto, quando il punto di vista è situato a un’altezza maggiore di quella degli oggetti da rappresentare, così come avviene nelle viste dette a volo d’uccello.

 TORNA ALL’INDICE

IL METODO DELLA “X”

Creare o dividere segmenti in parti uguali in prospettiva, soprattutto in quella centrale può essere lungo e tedioso. Però, si può utilizzare uno stratagemma, chiamato metodo della X, per creare segmenti equidistanti o dividere segmenti in parti uguali. Vediamo come fare.

Metodo X_movie

Immaginiamo di aver già fissato la LT e la LO e di aver individuato su LO il punto di fuga PV.

Tracciamo da un punto su LT una retta 1 e fughiamo su PV il suo punto base e la sua altezza.

Ad una certa distanza tracciamo un’altra retta verticale parallela a 1 che chiameremo retta 2.

Tracciamo adesso le diagonali tra i punti base delle due rette e le loro altezze; si disegnerà così una X (ecco da dove il nome di metodo della X).

Chiamiamo A il punto di intersezione tra le due diagonali e fughiamolo su PV.

Ora uniamo l’altezza della retta 1 con il punto medio sulla retta 2.

Dall’intersezione di questa retta con la fuga del punto di base della retta 1 individueremo il punto 3, base della retta 3 parallela alle due precedenti.

Allo stesso modo, dall’altezza della retta 2, tracciamo un segmento che interseca la retta 3 nel suo punto medio fino all’intersezione con la fuga del punto base della retta 1 che, individuerà un punto 4.

Da questo punto tracceremo la retta 4 parallela alle precedenti.

Procedendo analogamente, definiremo una serie di linee parallele, equidistanti, rappresentate in proiezione prospettica (vedi l’animazione sopra).

 TORNA ALL’INDICE

IL METODO DEI PUNTI DI DISTANZA

Dobbiamo ad un altro grande architetto del passato, Leon Battista Alberti, la costruzione abbreviata in prospettiva che usa i cosiddetti punti di distanza, ossia rette inclinate a 45° rispetto al piano di quadro (Q) ottenute ribaltando sulla linea di orizzonte LO, la distanza del punto di vista PV dal quadro. L’uso dei punti di distanza, facilita moltissimo la costruzione delle figure in prospettiva centrale. Infatti, ogni punto può essere individuato dall’intersezione di una linea passante per il punto perpendicolare al quadro (che in prospettiva concorre al punto principale PP) con una linea, passante per il punto, inclinata di 45° rispetto al quadro (che in prospettiva concorre a un punto di distanza PD). In genere è sufficiente l’uso di un solo punto di distanza.

Metodo dei Punti di Distanza

 TORNA ALL’INDICE

MAPPA CONCETTUALE DELL’ARGOMENTO

 TORNA ALL’INDICE

Apr 222013
 

ASSO_ISO_SCALA

DESCRIZIONE:

Strumenti da Disegnofoglio F4 liscio gr.220, matita HB/2, squadretterigacompasso e normografo.

Livello: classi terze.

Difficoltà: alta.

Descrizione: usando un foglio dall’album da disegno, effettuiamo la squadratura secondo lo schema appreso (vedi SQUADRATURA). Utilizzeremo l’area da disegno (quella gialla) per realizzare l’esercitazione della scheda sopra.

PROCEDURA OPERATIVA:

posizionando il foglio in orizzontale (ossia con il lato lungo verso di noi), procediamo nel seguente modo:

  1. tracciamo gli assi X, Y e Z come per l’assonometria isometrica;
  2. tracciamo l’asse Y’ per costruire la nostra figura di riferimento per il ribaltamento;
  3. disegniamo, ora, sul piano virtuale Y’Z (ortogonale) la nostra figura di riferimento per la costruzione della rampa, ossia la sua vista dall’alto riportando in scala le misure come indicate nei dati dell’esercitazione;
  4. proiettiamo ciascun punto di questa proiezione sugli assi Z e Y’;
  5. puntando il compasso sul centro degli assi, ribaltiamo queste proiezioni sugli assi X e Y;
  6. proiettiamo ora parallelamente a X e Y tali ribaltamenti, ricostruendo sul piano XY la figura di riferimento già disegnata sul piano Y’Z;
  7. da ciascun punto tracciamo una parallela a Z della lunghezza del relativo gradino;
  8. disegnano ora prima le pedate di ogni singolo gradino come nell’animazione sotto e poi le diverse alzate;
  9. completiamo la figura rinforzando le basi della scala (solo quelle visibili dalla nostra posizione);
  10. abbiamo così costruito l’assonometria isometrica di una rampa formata da 3 gradini

Scala_movie

SCARICA L’ARTICOLO:
Apr 152013
 
INVILUPPO ESAGONALE
Dati
AREA DA DISEGNO QUADRATA
LINEE distanti 1 centimetro e 1/2 centimetro
CONSEGNE:
Consegna 1 INVILUPPO ESAGONALE 1
Consegna 2 INVILUPPO ESAGONALE 2
Digit ESEGUI LE CONSEGNE 1 E 2 IN DIGITALE USANDO IL CAD
DIFFICOLTA’ e CLASSE:
Livello Classe
STRUMENTI NECESSARI:
DESCRIZIONE:

usando un foglio a quadri dal quadernone, effettuiamo la sua squadratura secondo lo schema appreso (vedi SQUADRATURA). Utilizzeremo l’area da disegno (quella gialla) per realizzare le consegne delle 2 schede sotto.

COME INIZIARE

Per prima cosa, dovremo disegnare un’area perfettamente quadrata:

  • contiamo in orizzontale il numero di quadretti dell’area da disegno, come in figura;
  • dovremo considerare il numero massimo di quadretti pari; quindi, se per caso il foglio avrà 47 quadretti, dovremo fermarci a 46, il numero pari più grande possibile;

  • stabilito il numero di quadretti massimo orizzontali, riportiamoli in verticale come in figura;

  • adesso tracciamo l’area quadrata composta in orizzontale e verticale dallo stesso numero di quadretti;

  • tracciamo adesso le mediane come in figura sotto;

  • puntiamo il compasso nell’intersezione tra i due assi, al centro dell’area e tracciamo una circonferenza di diametro pari al lato del quadrato;

  • il cerchio così creato, sarà tangente al perimetro dell’area quadrata;
  • puntiamo il compasso con la stessa apertura precedente in A e tracciamo un semicerchio come nel disegno sotto;

  • allo stesso modo puntiamo il compasso con la stessa apertura in B e tracciamo un altro semicerchio come in A;

  • uniamo adesso i punti C con D e E con F sulla circonferenza; in questo modo la circonferenza risulterà divisa in 6 parti uguali;

INVILUPPO ESAGONALE 1
  • adesso, su ciascuno dei 6 bracci, tracciamo dei puntini distanti tra di loro 1 centimetro avendo l’accortezza di tracciarli a partire dal centro verso la circonferenza;
  • a questo punto, come nell’animazione sotto, uniamo ciascun primo punto con l’ultimo dal lato opposto di ogni singolo quadrante;

Inviluppo_esagonale_movie

  • nella prima consegna, dovrete unire punti distanti 1 centimetro come nell’immagine sotto;
INVILUPPO ESAGONALE 2
  • nella seconda consegna, dopo aver seguito la stessa procedura, dovrete unire punti distanti 1/2 centimetro. Otterrete una griglia più fitta con il doppio delle linee;
ARTICOLI CORRELATI:
Apr 032013
 
P.O. RETTANGOLO
Dati LATO 1 = 7 cm – LATO 2 = 4 cm
CONSEGNE:
1 P.O. RETTANGOLO PARALLELO AL PIANO ORIZZONTALE
2 P.O. RETTANGOLO PARALLELO AL PIANO VERTICALE
3 P.O. RETTANGOLO PARALLELO AL PIANO LATERALE
4 REALIZZA LE P.O. UTILIZZANDO IL CAD
STRUMENTI NECESSARI:
OPERAZIONI INIZIALI:

usando un foglio F4, posizionato in orizzontale, effettuiamo la sua squadratura secondo lo schema appreso (vedi SQUADRATURA).

In questa esercitazione, effettueremo le 3 Proiezioni Ortogonali di un rettangolo di lati dati. Nella prima, il rettangolo sarà posto parallelamente al Piano Orizzontale, nella seconda al Piano Verticale e nella terza al Piano Laterale. In ognuna di esse sarà fondamentale disegnare il rettangolo al centro del piano a cui è parallelo.

FIGURA DI RIFERIMENTO:

P.O. RETTANGOLO // AL PIANO ORIZZONTALE
01 – Il rettangolo posto parallelamente al Piano Orizzontale, ossia al piano che passa sotto i nostri piedi come il pavimento su cui camminiamo si trova nella posizione descritta sotto rispetto ai tre piani e proietta la sua superficie proprio sul Piano Orizzontale. Essendo una figura bidimensionale e non avendo per cui spessore, sugli altri due piani proietterà due linee di lunghezza pari ai lati del rettangolo.

01 – Rettangolo parallelo al Piano Orizzontale

02 – Nell’immagine seguente, potete osservare le tre proiezioni del rettangolo sui tre piani ortogonali.

02 – Proiezioni del rettangolo sui tre piani ortogonali

03 – Una volta che i 3 piani vengono ribaltati sul foglio da disegno trovandosi in posizione complanare, saremo in grado di disegnare le Proiezioni Ortogonali del quadrato sul foglio. Si dovrà partire dal quadrato sul Piano Orizzontale per poter poi determinare le proiezioni sui piani Verticale e Laterale che, come detto, saranno due segmenti di lunghezza pari al lato del quadrato.

03 – Proiezioni ortogonali di un Rettangolo parallelo al Piano Orizzontale

TUTORIAL VIDEO:
  1. dividiamo l’area da disegno in quattro parti uguali tracciando un asse orizzontale e uno verticale;
  2. trascriviamo con il normografo i nomi dei diversi piani: P.O. (Piano Orizzontale),P.V. (Piano Verticale), P.L. (piano laterale);
  3. trascriviamo, inoltre, sull’asse orizzontale, all’inizio e alla fine le lettere L. e T.(Linea di Terra);
  4. costruiamo ora su P.O. il RETTANGOLO utilizzando le squadrette e la riga;
  5. nominiamo ogni spigolo del rettangolo ABCD (scriviamo piccolo e bene a mano libera);
  6. proiettiamo ciascuno spigolo ABCD ortogonalmente su P.V.;
  7. all’altezza indicata sui dati dell’esercitazione, tracciamo il segmento proiezione del rettangolo ABCD sul Piano Verticale e inseriamo i nomi degli spigoli come in figura;
  8. proiettiamo ora ABCD su P.L.; per fare ciò dovremo proiettare gli spigoli del quadrato sull’asse verticale della costruzione. Poi puntando il compasso al centro degli assi ribaltiamo le proiezioni ABCD su L.T.;
  9. alziamo adesso le proiezioni all’altezza stabilita precedentemente (l’altezza su P.V.e su P.L. è la stessa) e colleghiamo le proiezioni su P.V. e su P.L.;
  10. per completare l’elaborato, rinforziamo solo le proiezioni del quadrato sui tre diversi piani (linee in rosso).

PORettangolo_movie

P.O. RETTANGOLO // AL PIANO VERTICALE
01 – Il rettangolo posto parallelamente al Piano Verticale, ossia al piano posto di fronte a noi come una parete, si trova nella posizione descritta sotto rispetto ai tre piani e proietta la sua superficie proprio sul Piano Verticale. Essendo una figura bidimensionale e non avendo per cui spessore, sugli altri due piani proietterà due linee di lunghezza pari ai suoi lati maggiore e minore.

01 – Rettangolo parallelo al Piano Verticale

02 – Nell’immagine seguente, potete osservare le tre proiezioni del rettangolo sui tre piani ortogonali.

02 – Proiezioni del rettangolo sui tre piani ortogonali

03 – Una volta che i 3 piani vengono ribaltati sul foglio da disegno trovandosi in posizione complanare, saremo in grado di disegnare le Proiezioni Ortogonali del rettangolo sul foglio. Si dovrà partire dal rettangolo sul Piano Verticale per poter poi determinare le proiezioni sui piani orizzontale e laterale che, come detto, saranno due segmenti di lunghezza pari ai suoi lati.

03 – Proiezioni ortogonali di un rettangolo parallelo al Piano Verticale

P.O. RETTANGOLO // AL PIANO LATERALE
01 – Il rettangolo posto parallelamente al Piano Laterale, ossia al piano posto alla nostra destra come la parete di una stanza posta lateralmente a noi, si trova nella posizione descritta sotto rispetto ai tre piani e proietta la sua superficie proprio sul Piano Laterale. Essendo una figura bidimensionale e non avendo per cui spessore, sugli altri due piani proietterà due segmenti di lunghezza pari ai suoi lati minore e maggiore.

01 – Rettangolo parallelo al Piano Laterale

02 – Nell’immagine seguente, potete osservare le tre proiezioni del rettangolo sui tre piani ortogonali.

02 – Proiezioni del rettangolo sui tre piani ortogonali

03 – Una volta che i 3 piani vengono ribaltati sul foglio da disegno trovandosi in posizione complanare, saremo in grado di disegnare le Proiezioni Ortogonali del rettangolo sul foglio. Si dovrà partire dal rettangolo sul Piano Laterale per poter poi determinare le proiezioni sui piani Orizzontale e Verticale che, come detto, saranno due segmenti di lunghezza pari ai suoi lati.

03 – Proiezioni ortogonali di un rettangolo parallelo al Piano Laterale

ALTRI TUTORIAL:
Mar 162013
 
Reticolo2 INVILUPPO DIAGONALE
Dati
AREA DA DISEGNO QUADRATA
LINEE distanti 1 centimetro e 1/2 centimetro
CONSEGNE:
Consegna 1 INVILUPPO DIAGONALE 1
Consegna 2 INVILUPPO DIAGONALE 2
Digit ESEGUI LE CONSEGNE 1 E 2 IN DIGITALE USANDO IL CAD
DIFFICOLTA’ e CLASSE:
Livello Classe
STRUMENTI NECESSARI:
DESCRIZIONE:

usando un foglio a quadri dal quadernone, effettuiamo la sua squadratura secondo lo schema appreso (vedi SQUADRATURA). Utilizzeremo l’area da disegno (quella gialla) per realizzare le consegne delle 2 schede sotto.

COME INIZIARE

Per prima cosa, dovremo disegnare un’area perfettamente quadrata:

  • contiamo in orizzontale il numero di quadretti dell’area da disegno, come in figura;
  • dovremo considerare il numero massimo di quadretti pari; quindi, se per caso il foglio avrà 47 quadretti, dovremo fermarci a 46, il numero pari più grande possibile;

  • stabilito il numero di quadretti massimo orizzontali, riportiamoli in verticale come in figura;

  • adesso tracciamo l’area quadrata composta in orizzontale e verticale dallo stesso numero di quadretti;

  • tracciamo le diagonali all’interno dell’area quadrata;

  • scegliamo un quadrante; come nell’animazione sotto, iniziamo ad unire con delle rette usando le squadrette, il primo punto in alto con il secondo dal centro nel quadrante appena scelto;
  • poi il secondo con il terzo, il terzo con il quarto e così via fino a completare tutto il quadrante;
  • ripetiamo specularmente la stessa procedura nel quadrante in alto, in quello in basso e in quello a sinistra.

INVILUPPO2_Movie

INVILUPPO DIAGONALE 1
  • nella prima consegna, dovrete unire punti distanti 1 centimetro come nell’immagine sotto;

INVILUPPO DIAGONALE 2
  • nella seconda consegna, dovrete unire punti distanti 1/2 centimetro come nell’immagine sotto. Otterrete una griglia più fitta con il doppio delle linee;

ARTICOLI CORRELATI:
Mar 072013
 
P.O. QUADRATO
Dati LATO QUADRATO = 7 cm
CONSEGNE:
1 P.O. QUADRATO PARALLELO AL PIANO ORIZZONTALE
2 P.O. QUADRATO PARALLELO AL PIANO VERTICALE
3 P.O. QUADRATO PARALLELO AL PIANO LATERALE
4 REALIZZA LE P.O. UTILIZZANDO IL CAD
STRUMENTI NECESSARI:
OPERAZIONI INIZIALI:

usando un foglio F4, posizionato in orizzontale, effettuiamo la sua squadratura secondo lo schema appreso (vedi SQUADRATURA).

In questa esercitazione, effettueremo le 3 Proiezioni Ortogonali di un quadrato di lato dato. Nella prima, il quadrato sarà posto parallelamente al Piano Orizzontale, nella seconda al Piano Verticale e nella terza al Piano Laterale. In ognuna di esse sarà fondamentale disegnare il quadrato al centro del piano a cui è parallelo.

FIGURA DI RIFERIMENTO:

P.O. QUADRATO // AL PIANO ORIZZONTALE
01 – Il quadrato posto parallelamente al Piano Orizzontale, ossia al piano che passa sotto i nostri piedi come il pavimento su cui camminiamo si trova nella posizione descritta sotto rispetto ai tre piani e proietta la sua superficie proprio sul Piano Orizzontale. Essendo una figura bidimensionale e non avendo per cui spessore, sugli altri due piani proietterà due linee di lunghezza pari al lato del quadrato.

01 – Quadrato parallelo al Piano Orizzontale

02 – Nell’immagine seguente, potete osservare le tre proiezioni del quadrato sui tre piani ortogonali.

02 – Proiezioni del quadrato di lato dato sui tre piani ortogonali

03 – Una volta che i 3 piani vengono ribaltati sul foglio da disegno trovandosi in posizione complanare, saremo in grado di disegnare le Proiezioni Ortogonali del quadrato sul foglio. Si dovrà partire dal quadrato sul Piano Orizzontale per poter poi determinare le proiezioni sui piani Verticale e Laterale che, come detto, saranno due segmenti di lunghezza pari al lato del quadrato.

03 – Proiezioni ortogonali di un Quadrato parallelo al Piano Orizzontale

TUTORIAL VIDEO:
  1. dividiamo l’area da disegno in quattro parti uguali tracciando un asse orizzontale e uno verticale;
  2. trascriviamo con il normografo i nomi dei diversi piani: P.O. (Piano Orizzontale), P.V. (Piano Verticale), P.L. (piano laterale);
  3. trascriviamo, inoltre, sull’asse orizzontale, all’inizio e alla fine le lettere L. e T. (Linea di Terra);
  4. costruiamo ora su P.O. il QUADRATO dato il lato utilizzando il metodo appreso precedentemente;
  5. nominiamo ogni vertice del quadrato ABCD;
  6. proiettiamo ciascuno spigolo ABCD ortogonalmente su P.V.;
  7. all’altezza indicata sui dati dell’esercitazione, tracciamo il segmento proiezione del quadrato ABCD sul Piano Verticale e inseriamo i nomi degli spigoli come in figura;
  8. proiettiamo ora ABCD su P.L.; per fare ciò dovremo proiettare gli spigoli del quadrato sull’asse verticale della costruzione. Poi puntando il compasso al centro degli assi ribaltiamo le proiezioni ABCD su L.T.;
  9. alziamo adesso le proiezioni all’altezza stabilita precedentemente (l’altezza su P.V. e su P.L. è la stessa) e colleghiamo le proiezioni su P.V. e su P.L.;
  10. per completare l’elaborato, rinforziamo solo le proiezioni del quadrato sui tre diversi piani (linee in rosso).

P.O. QUADRATO // AL PIANO VERTICALE
01 – Il quadrato posto parallelamente al Piano Verticale, ossia al piano posto di fronte a noi come una parete si trova nella posizione descritta sotto rispetto ai tre piani e proietta la sua superficie proprio sul Piano Verticale. Essendo una figura bidimensionale e non avendo per cui spessore, sugli altri due piani proietterà due linee di lunghezza pari al lato del quadrato.

01 – Quadrato parallelo al Piano Verticale

02 – Nell’immagine seguente, potete osservare le tre proiezioni del quadrato sui tre piani ortogonali.

02 – Proiezioni del quadrato di lato dato sui tre piani ortogonali

03 – Una volta che i 3 piani vengono ribaltati sul foglio da disegno trovandosi in posizione complanare, saremo in grado di disegnare le Proiezioni Ortogonali del quadrato sul foglio. Si dovrà partire dal quadrato sul Piano Verticale per poter poi determinare le proiezioni sui piani orizzontale e laterale che, come detto, saranno due segmenti di lunghezza pari al lato del quadrato.

03 – Proiezioni ortogonali di un Quadrato parallelo al Piano Verticale

P.O. QUADRATO // AL PIANO LATERALE
01 – Il quadrato posto parallelamente al Piano Laterale, ossia al piano posto alla nostra destra come la parete di una stanza posta lateralmente a noi, si trova nella posizione descritta sotto rispetto ai tre piani e proietta la sua superficie proprio sul Piano Laterale. Essendo una figura bidimensionale e non avendo per cui spessore, sugli altri due piani proietterà due segmenti di lunghezza pari al lato del quadrato.

01 – Quadrato parallelo al Piano Laterale

02 – Nell’immagine seguente, potete osservare le tre proiezioni del quadrato sui tre piani ortogonali.

02 – Proiezioni del quadrato di lato dato sui tre piani ortogonali

03 – Una volta che i 3 piani vengono ribaltati sul foglio da disegno trovandosi in posizione complanare, saremo in grado di disegnare le Proiezioni Ortogonali del quadrato sul foglio. Si dovrà partire dal quadrato sul Piano Laterale per poter poi determinare le proiezioni sui piani Orizzontale e Verticale che, come detto, saranno due segmenti di lunghezza pari al lato del quadrato.

03 – Proiezioni ortogonali di un Quadrato parallelo al Piano Laterale

ESERCIZI CORRELATI:
ALTRI TUTORIAL:
Feb 262013
 

Assonometria

Questo capitolo si configura come un completamento di quello sulle ASSONOMETRIE.

PIRAMIDE4
PIRAMIDE QUADRATA CUBO

Fino a qui, abbiamo disegnato figure a base quadrangolare (parallelepipedo, cubo, piramidi a base rettangolare o quadrata), quindi relativamente semplici perché i loro lati di base sono sempre paralleli agli assi XY di riferimento (piano orizzontale) per cui di facilmente tracciabili.

I problemi nascono quando dobbiamo realizzare figure i cui lati non sono più paralleli agli assi  X e Y o quando ruotiamo la figura rispetto a questi. Ad esempio come per le figure con basi poligonali illustrate qui sotto:

TETRAEDRO PIRAMIDE PENTAGONALE

In questi casi le proiezioni ortogonali ci vengono in aiuto. Infatti, unendo le due tecniche, riusciamo con facilità a realizzare qualunque figura geometrica in assonometria. In realtà il problema si pone principalmente nelle assonometrie Isometrica e Cavaliera in quanto nella Monometrica, il piano XY è ortogonale, quindi la figura di base può essere costruita con facilità sullo stesso.

PRISMA3misureTracciati gli assi XYZ nella proiezione isometrica, cioè inclinati con un angolo di 120° tra di loro, tracciamo ora, un nuovo asse Y’ ortogonale a Z. Avremo così un nuovo piano virtuale denominato ZY’. La caratteristica di questo piano è quella che i due assi sono tra di loro perpendicolari. Su questo nuovo piano, andremo a costruire la base del nostro solido come se fossimo sul Piano Orizzontale delle Proiezioni Ortogonali.

Proviamo a realizzare l’assonometria isometrica di un PRISMA a base triangolare.

Procediamo con la costruzione; l’animazione di seguito ci può aiutare a comprendere il procedimento di costruzione del solido geometrico in oggetto.

Ribaltamento

da 4 a 7 – Costruiamo il triangolo equilatero abc secondo il metodo già appreso.

da 8 a 10 – Proiettiamo ciascun punto a, b, c, perpendicolarmente all’asse Z e di seguito, perpendicolarmente all’asse Y’. Adesso applichiamo il vero è proprio ribaltamento, cioè riportiamo sugli assi X e Y le proiezioni dei punti abc del triangolo di base del prisma. Per far ciò, puntiamo il compasso al centro degli assi, e con apertura oa, oc e ob, ruotiamo queste proiezioni da Y’ fino a toccare l’asse Y.

da 11 a 12 – Allo stesso modo, sempre puntando il compasso al centro degli assi, ruotiamo le proiezioni sull’asse Z fino a far toccare loro l’asse X. Ora, procedendo come abbiamo sempre fatto, proiettiamo questi punti parallelamente agli assi X e Y.

13 – Seguiamo le proiezioni di a sia sull’asse X che su quello Y e dal loro incrocio troveremo il punto a sul piano XY.

da 14 a 15 – Allo stesso modo, seguiamo le proiezioni di b e c sia su X che su Y, per trovare rispettivamente i punti a e b sul piano XY.

16 – Unendo i punti a, b e c sul piano XY, definiremo il triangolo di base inferiore del prisma triangolare.

17 – Alziamo da a, b e c le altezze per costruire la base superiore triangolare del prisma.

da 18 a 20 – Per completare la figura rinforziamo solo ciò che si vede.

ESEMPI

Di seguito vediamo un esempio di RIBALTAMENTO in ciascuno dei metodi assonometrici studiati:

ISOMETRICA

Nell’animazione precedente e nella descrizione è indicato passo passo la procedura per eseguirla:

RibaltamentoISO

MONOMETRICA

Nel caso dell’assonometria monometrica, come detto la figura geometrica di base può essere costruita direttamente sul piano XY (vedi Figura a), oppure utilizzare anche in questo caso il RIBALTAMENTO (vedi Figura b):

Costruzione diretta

a – Costruzione diretta

Costruzione con ribaltamento

b – Costruzione con ribaltamento

 

 

 

 

 

 

CAVALIERA

Nel caso dell’assonometria cavaliera, il piano virtuale ZY’ può essere il piano ZX già esistente perché ortogonale. In questo caso, l’unica accortezza è quella di ricordarsi di dimezzare le misure della proiezione su Y come da tecnica costruttiva:

RibaltamentoCAV

PUOI LEGGERE ANCHE:
Feb 222013
 
INVILUPPO ORTOGONALE
Dati
AREA DA DISEGNO QUADRATA
LINEE distanti 2 quadretti e poi 1 quadretto
CONSEGNE:
Consegna 1 INVILUPPO ORTOGONALE 1
Consegna 2 INVILUPPO ORTOGONALE 2
Digit ESEGUI LE CONSEGNE 1 E 2 IN DIGITALE USANDO IL CAD
DIFFICOLTA’ e CLASSE:
Livello Classe
STRUMENTI NECESSARI:
DESCRIZIONE:

usando un foglio a quadri dal quadernone, effettuiamo la sua squadratura secondo lo schema appreso (clicca sulla Tavola tutta a sinistra per la procedura). Per tracciare l’inviluppo, dovremo disegnare un’area perfettamente quadrata (clicca sulla Tavola qui a sinistra per la procedura).

  • dividiamo l’area quadrata in 4 parti uguali tracciando le linee orizzontale e verticale passanti per il centro;
  • ora prendiamo in considerazione uno dei quattro quadrati che si sono disegnati sul foglio, ad esempio, quello in alto a destra;
  • seguendo l’esempio dell’animazione sotto, dovremo unire i punti sulla linea verticale con quelli sulla linea orizzontale usando le squadrette;
  • il primo punto in alto sulla linea verticale con il secondo da sinistra su quella orizzontale;
  • poi il secondo con il terzo, il terzo con il quarto, così fino alla fine delle linee;
  • ripetiamo specularmente la stessa procedura nel quadrato in alto a sinistra, in basso a destra e in basso a sinistra;

CONSEGNA 1
  • nella prima consegna, dovrete unire punti distanti 2 quadretti come nell’immagine sotto;

CONSEGNA 2
  • nella seconda consegna, dovrete unire punti distanti 1 quadretto come nell’immagine sotto;

ARTICOLI CORRELATI:
Feb 162013
 

Il METODO GENERALE, è una procedura grafica con la quale è possibile disegnare qualunque poligono regolare, utilizzando lo stesso metodo. Non è possibile definire in questo caso la dimensione del lato del poligono, bensì si dovrà partire dal diametro del cerchio che inscrive il poligono da disegnare.

Per rendere più semplice la procedura, sarà opportuno, fare in modo che il diametro del cerchio, sia sempre un multiplo del numero dei lati del poligono da disegnare. Quindi, ad esempio, se dobbiamo disegnare un pentagono, ossia un poligono di 5 lati, la dimensione del cerchio che lo inscrive dovrà essere un multiplo di questi lati, ossia misurare 10, 15, 20,…. cm, perché in questo modo sarà più facile poterlo dividere secondo il procedimento grafico. Se il poligono è un esagono (6 lati), il diametro del cerchio potrà essere 12,18,….cm. Stessa procedura per l’ettagono, ottagono, ecc.

ESEMPIO: COSTRUZIONE DI UN PENTAGONO

DESCRIZIONE:

Strumenti da Disegnofoglio F4 liscio gr.220, matita HB/2, squadretteriga e compasso.

Livello: classi seconde.

Difficoltà: media.

Descrizione: usando un foglio dall’album da disegno, effettuiamo la squadratura secondo lo schema appreso (vedi SQUADRATURA). Utilizzeremo l’area da disegno (quella gialla) per realizzare l’esercitazione della scheda sopra.

PROCEDURA OPERATIVA:

posizionando il foglio in orizzontale (ossia con il lato lungo verso di noi), procediamo nel seguente modo:

  1. dividere con due rette una orizzontale r e una verticale s il foglio in 4 parti uguali;
  2. puntiamo il compasso al centro del foglio, all’incrocio delle due linee r e e tracciamo una circonferenza del diametro stabilito (10cm o 15cm) che intersecherà le due rette nei punti A e B su r e C e D su s;
  3. dividiamo ora il segmento CD in un numero di parti pari al numero di lati della figura che andremo a realizzare (stiamo costruendo un pentagono, per cui il segmento CD andrà diviso in 5 parti uguali);
  4. puntiamo il compasso in C e con apertura CD (pari al diametro dl cerchio), tracciamo un arco di circonferenza che intersecherà la retta orizzontale r in un punto E;
  5. uniamo ora E con il punto 2 sul segmento CD (il punto 2 è il secondo tratto in cui abbiamo diviso CD) e prolunghiamo questa retta fino ad incontrare la circonferenza nel punto F;
  6. la distanza DF rappresenta la lunghezza di uno dei lati del pentagono. Essendo il pentagono che andiamo a disegnare una figura regolare, ossia con lati e angoli tutti uguali, apriamo il compasso con lunghezza DF e puntandolo su F tracciamo un archetto che interseca la circonferenza in un punto G;
  7. puntiamo ora il compasso in D con la stessa apertura DF e tracciamo un archetto che interseca la circonferenza in un punto H;
  8. infine, puntiamo il compasso su H sempre con la stessa apertura (DF) e tracciamo un archetto che interseca la circonferenza in un punto I;
  9. uniamo i punti DFGIH; otterremo il PENTAGONO costruito con il metodo detto generale.

MetGenPent_movie

SCARICA L’ARTICOLO:
Gen 312013
 
PENTAGONO DATO IL LATO
Dati Il LATO misura 8 cm o secondo indicazione del docente
CONSEGNE:
Consegna 1 Esegui la costruzione geometrica
Digit Esegui le consegne in digitale utilizzando il CAD
DIFFICOLTA’ e CLASSE:
Livello Classe
STRUMENTI NECESSARI:
DESCRIZIONE:

Prima di iniziare, pulisci il piano di lavoro e gli strumenti da disegno. Usando un foglio F4 liscio, effettua la sua squadratura secondo lo schema appreso (vedi SQUADRATURA). Utilizzeremo l’area da disegno (quella gialla) per realizzare le consegne.

FIGURA DI RIFERIMENTO:

PROCEDURA OPERATIVA

posizionando il foglio in orizzontale (ossia con il lato lungo verso di noi), procediamo nel seguente modo:

Step #1 – tracciamo una retta orizzontale r nella parte bassa del foglio;

Step #2 – tracciamo poi un segmento A-B di lunghezza data al centro della retta r;

Step #3 – punta il compasso in B e con apertura a piacere, ma comunque inferiore alla metà di A-B, e traccia una circonferenza che intersecherà la retta r nei punti 1 e 2;

Step #4 – adesso con apertura 1-2, punta il compasso in 1 e traccia un arco di circonferenza dalla parte superiore della retta r;

Step #5 – con la stessa apertura, punta il compasso in 2 e traccia l’arco opposto; i due archi si intersecheranno in un punto che chiameremo 3;

Step #6 – con il righello uniamo i punti B e 3 tracciando così la retta perpendicolare a r passante per B;

Step #7 – puntiamo il compasso in B e con apertura B-A pari alla lunghezza del segmento dato, tracciamo un arco di circonferenza che intersecherà la retta verticale in un punto che chiameremo L;

Step #8 – con il righello o la squadretta, misuriamo la metà del segmento A-B che indicheremo con la lettera M; puntiamo il compasso in M e con apertura M-L, tracciamo un arco che intersecherà la retta r in un punto N;

Step #9 – adesso puntiamo il compasso in A e con apertura A-N, tracciamo un arco dalla parte superiore della retta r sufficientemente lungo;

Step #10 – senza cambiare l’apertura puntiamo il compasso sul punto B e tracciamo l’arco opposto che intersecherà il precedente in un punto che chiameremo D;

Step #11 – apriamo adesso il compasso con la lunghezza A-B pari alla misura del lato dato e puntiamolo in D per tracciare un arco che intersecherà quello precedente in un punto che chiameremo E;

Step #12 / 15 – a questo punto possiamo disegnare il pentagono unendo il punto B con C, C con D, D con E ed infine E con A.

Ricordo che le linee colorate di rosso sono quelle che vanno rinforzate nel disegno.

TUTORIAL VIDEO

Gen 212013
 
PENTAGONO DATA LA CIRCONFERENZA
Dati RAGGIO CIRCONFERENZA 8 cm o secondo indicazione del docente
CONSEGNE:
Consegna 1 Esegui la costruzione geometrica
Digit Esegui le consegne in digitale utilizzando il CAD
DIFFICOLTA’ e CLASSE:
Livello Classe
STRUMENTI NECESSARI:
DESCRIZIONE:

Prima di iniziare, pulisci il piano di lavoro e gli strumenti da disegno. Usando un foglio F4 liscio, effettua la sua squadratura secondo lo schema appreso (vedi SQUADRATURA). Utilizzeremo l’area da disegno (quella gialla) per realizzare le consegne.

FIGURA DI RIFERIMENTO:

PROCEDURA OPERATIVA

posizionando il foglio in orizzontale (ossia con il lato lungo verso di noi), procediamo nel seguente modo:

STEP #01 – con la riga o la squadretta tracciamo gli assi orizzontale e verticale r e s che si intersecano in O passanti per il centro del foglio;

STEP #02 – puntiamo il compasso in O e con apertura data, pari al raggio della circonferenza, tracciamo un cerchio che interseca l’asse r nei punti A e B e l’asse s nei punti C e D;

STEP #03 – con il righello determiniamo il punto medio tra O e B che chiameremo M;

STEP #04 – puntiamo il compasso in M e con apertura MC, tracciamo un arco che interseca l’asse r in un punto che chiameremo N;

STEP #05 – puntiamo poi il compasso in D e con apertura DN, tracciamo un altro arco che intersecherà la circonferenza nei punti E ed F;

STEP #06 – senza cambiare l’apertura, puntiamo il compasso in E e tracciamo un archetto che interseca la circonferenza in un punto che chiameremo G. Allo stesso modo puntiamo il compasso in F e tracciamo un altro archetto che intersecherà la circonferenza in un punto che chiameremo H;

STEP #07 – a questo punto con il righello uniamo il punto D con il punto E; allo stesso modo uniamo E con G, G con H, H con F e infine F con D.

Ricordo che le linee colorate di rosso sono quelle che vanno rinforzate nel disegno.

VIDEO

Gen 182013
 
GRIGLIA DI CERCHI
Dati CERCHI di raggio 4 quadretti
CONSEGNE:
Consegna 1 GRIGLIA DI CERCHI
Digit ESEGUI LE CONSEGNE 1 E 2 IN DIGITALE USANDO IL CAD
DIFFICOLTA’ e CLASSE:
Livello Classe
STRUMENTI NECESSARI:
DESCRIZIONE:

usando un foglio a quadri dal quadernone, effettuiamo la sua squadratura secondo lo schema appreso (vedi SQUADRATURA). Utilizzeremo l’area da disegno (quella gialla) per realizzare le consegne richieste sopra.

GRIGLIA DI CERCHI

posizionando il foglio in verticale (ossia con il lato corto verso di noi) e i fori a sinistra, procediamo nel seguente modo:

  • partendo dallo spigolo in alto a sinistra dell’area da disegno, segniamo con la matita un punto distante 5 quadretti dal bordo superiore e da quello sinistro. Poi con il compasso con apertura di 4 quadretti tracciamo una circonferenza.

  • allo stesso modo, segniamo un punto ogni 4 quadretti verso destra (vedi figura sotto).

  • Tracciamo per ciascuno dei punti segnati una circonferenza. Si realizzerà una sequenza di cerchi orizzontali. L’ultimo cerchio a destra potrebbe essere parziale.

  • Le successive sequenze orizzontali andranno tracciate posizionando i centri dei cerchi 4 quadretti più in basso.

  • Terminata la seconda sequenza, iniziamo la terza. Scendiamo ancora una volta di 4 quadratini e ripetiamo come in figura sotto.

  • Ripetiamo la sequenza fino alla fine del foglio in basso.
ESERCIZI CORRELATI:
Gen 132013
 
SEQUENZA DI CERCHI
Dati CERCHI di raggio 4 quadretti
CONSEGNE:
Consegna 1 SEQUENZA CERCHI ORIZZONTALE
Consegna 2 SEQUENZA CERCHI VERTICALE
Digit ESEGUI LE CONSEGNE 1 E 2 IN DIGITALE USANDO IL CAD
DIFFICOLTA’ e CLASSE:
Livello Classe
STRUMENTI NECESSARI:
DESCRIZIONE:

usando un foglio a quadri dal quadernone, effettuiamo la sua squadratura secondo lo schema appreso (vedi SQUADRATURA). Utilizzeremo l’area da disegno (quella gialla) per realizzare le consegne richieste sopra.

SEQUENZA CERCHI ORIZZONTALE

posizionando il foglio in verticale (ossia con il lato corto verso di noi) e i fori a sinistra, procediamo nel seguente modo:

  • partendo dallo spigolo in alto a sinistra dell’area da disegno, segniamo con la matita un punto distante 5 quadretti dal bordo superiore e da quello sinistro. Poi con il compasso con apertura di 4 quadretti tracciamo una circonferenza.

  • allo stesso modo, segniamo un punto ogni 4 quadretti verso destra (vedi figura sotto).

  • Tracciamo per ciascuno dei punti segnati una circonferenza. Si realizzerà una sequenza di cerchi orizzontali. L’ultimo cerchio a destra potrebbe essere parziale.

  • Le successive sequenze orizzontali andranno tracciate posizionando i centri dei cerchi 9 quadretti più in basso.

  • Ripetiamo la sequenza fino alla fine del foglio in basso.
SEQUENZA CERCHI VERTICALE

Ripeti lo stesso disegno posizionando, questa volta, le sequenze di cerchi in verticale.

ESERCIZI CORRELATI: