Set 122018
 

Quando parliamo di trasporti, ci riferiamo a tutti quei sistemi che consentono la movimentazione di merci e persone. Dico sistemi perché non si tratta solo dei mezzi, ma anche di tutte le infrastrutture necessarie, ad esempio le strade, le ferrovie, gli aeroporti e la logistica, ossia tutta l’organizzazione che semplifica il trasporto e lavora per renderlo rapido e economico.

Il sistema dei trasporti è piuttosto variegato e comprende una grande quantità di tipologie di mezzi a volte molto diversi tra loro, ma perfettamente integrati. Si pensi, ad esempio, alla catena del freddo in cui i cibi vengono trasportati passando da un mezzo ad un altro senza che mai, la temperatura scenda al di sotto di un determinato valore o come nel trasporto intermodale dove le merci passano da un mezzo all’altro senza mai essere sconfezionati, all’interno di container, fino alla destinazione finale.

Indice Argomenti Trasporti
1 I MEZZI DI TRASPORTO
2 LE INFRASTRUTTURE
3 LA LOGISTICA
I MEZZI DI TRASPORTO

In generale i mezzi di trasporto vengono suddivisi in base alla superficie sulla quale operano; avremo così mezzi terrestri, acquatici e aerei.

I mezzi terrestri sono i più diffusi e differenziati; abbiamo mezzi a due o più ruote, si pensi alla bici e alle moto o alle auto, furgoni e camion; abbiamo poi mezzi su molte ruote come i TIR, i grandi camion da trasporto dotati anche di rimorchio, abbiamo mezzi con alimentazioni diverse, dalla benzina all’elettrico, mezzi che procedono su rotaia fuori o dentro i centri urbani come i treni e i tram. E non dimentichiamo seggiovie, funivie, cabinovie che utilizzano cavi in sospensione, ma sono sempre da annoverare tra i mezzi terrestri.

Le parti comuni dei mezzi terrestri su gomma sono il sistema di propulsione, la scocca, la carrozzeria, il sistema di guida e i sistemi accessori.

Per quelli su ferro, invece, il sistema di alimentazione, la locomotiva e le carrozze.

I mezzi navali sono quelli che si spostano sull’acqua, che non deve essere necessariamente quella del mare, ma può anche essere fluviale e lacustre. La categoria include mezzi di ogni genere, dalle piccole barche a remi o le canoe, ai motoscafi a motore, gommoni e lussuosissimi yacht. Sempre per il trasporto delle persone le dimensioni crescono fino ad arrivare ai giganteschi transatlantici, le città del mare capaci di trasportare per il mondo nei paradisi turistici migliaia di persone contemporaneamente. Per le merci solcano i mari le più grandi navi mai costruite, le porta-container, le petroliere e in campo militare le portaerei, gli incrociatori ma anche mezzi subacquei come i sommergibili. Addirittura alcuni riescono a sollevarsi sull’acqua quasi per volare, come gli aliscafi o gli hovercraft.

Le parti comuni dei mezzi navali sono lo scafo, il sistema di propulsione, il sistema di guida e le sovrastrutture.

I mezzi aerei sono quelli più recenti, perché realizzare strumenti capaci di volare per trasportare persone e merci è stato sicuramente il compito più difficile e lungo. Oggi l’aviazione ha raggiunto livelli di sicurezza incredibili, tant’è che l’aereo è considerato da tutti il mezzo di trasporto più sicuro ed è anche il sistema più rapido per gli spostamenti a grandi distanze. I mezzi aerei possono essere classificati facilmente in base al sistema di propulsione utilizzato; avremo sistemi ad aria o gas, come ad esempio le mongolfiere o i dirigibili, che utilizzano differenze di pressione nelle masse d’aria per sollevarsi o i deltaplani che utilizzano la densità dell’aria per mantenersi in volo; sistemi a motore, sia ad elica che a reazione, quindi tutti i tipi di aereo dai piccoli biposto ai giganti dell’aria che trasportano centinaia di passeggeri. Dobbiamo anche considerare quei mezzi che decollano verticalmente come gli elicotteri e i droni, nonché una categoria a parte i razzi e tutti i sistemi in grado di superare la forza attrattiva della Terra per uscire nello spazio come le navicelle e i satelliti artificiali.

Le parti comuni dei mezzi aerei sono la fusoliera, il sistema di propulsione, le ali, la coda e il sistema di atterraggio/decollo.

LE INFRASTRUTTURE

I mezzi di trasporto consentono la mobilità perché sono legati a specifiche infrastrutture realizzate per consentire loro un facile spostamento e per integrarsi con gli altri sistemi infrastrutturali e il territorio, sia urbanizzato che non.

Evidentemente le infrastrutture sono differenti per ciascuno dei tipo di trasporto, terrestre, navale o aereo e per ciascuno di essi saranno realizzate strutture in grado di agevolarne la mobilità. Vediamole un po’ più nel dettaglio.

Indice Argomenti Infrastrutture
1 INFRASTRUTTURE STRADALI
2 INFRASTRUTTURE FERROVIARIE
3 INFRASTRUTTURE SU FUNE
4 INFRASTRUTTURE NAVALI
5 INFRASTRUTTURE AEREE
LE INFRASTRUTTURE STRADALI

Le infrastrutture stradali sono costruite essenzialmente da strade asfaltate, ossia da percorsi resi uniformi, dove viene steso uno strato compattato di asfalto che rende confortevole la percorrenza ai mezzi su gomma, consentendo anche un’ottima superficie frenante in caso di necessità. Le strade possono essere fatte anche con materiali lapidei, ciottoli o altro. La sezione stradale non è piana, ma leggermente ricurva verso i lati per consentire un rapido deflusso delle acque in caso di pioggia.

Le strade sono divise in corsie in modo da regolare il traffico. Ogni corsia ha una funzione specifica. Quelle a destra prendono il nome di corsie d’emergenza e vengono lasciate libere per il passaggio dei mezzi di soccorso o per le soste d’emergenza in caso di auto in panne. Poi abbiamo le corsie di marcia dove bisogna rispettare degli specifici limiti di velocità e le corsia di sorpasso, dove è possibile effettuare sorpassi delle altre autovetture viaggiando ad una velocità maggiore, ma sempre entro i limiti stabiliti dalla legge.

L’insieme delle corsie prende il nome di carreggiata. Le strade possono avere un’unica carreggiata con uno o due sensi di marcia, come possono avere carreggiate separate come nel caso delle autostrade dove il traffico scorre molto più velocemente perché non esistono incroci o interferenze con altri sistemi di trasporto.

Alcune strade, soprattutto nelle città con terreno pianeggiante, hanno ai lati opportunamente separate, piste ciclabili per le biciclette ed infine, ai margini, delle banchine o marciapiedi per consentire la percorrenza ai pedoni senza avere alcun contatto con la sede stradale dove passano gli autoveicoli.

Le strade il più delle volte, sono separate dal resto del territorio da guardrail, strutture in acciaio che hanno anche funzione protettiva.

Guardrail

Le strade in Italia vengono classificate in base all’articolo 2 del D.L. 285/92 che le divide in:

  1. autostrade;
  2. strade extraurbane principali;
  3. strade extraurbane secondarie;
  4. strade urbane di scorrimento;
  5. strade urbane di quartiere;
  6. strade locali.

Autostrada

Alle strade sono poi abbinate altre infrastrutture come ad esempio gli incroci e le rotatorie che consentono gli scambi tra strade differenti e regolano il traffico in più direzioni Aree di sosta che permettono di fermare il proprio veicolo quando si è raggiunta la destinazione; aree di servizio che servono per il rifornimento di carburante del nostro mezzo e in alcuni casi sono dotate di spazi pubblici, ristoranti, servizi igienici, area giochi ed altro. Infine gallerie e ponti che consentono di oltrepassare ostacoli e di collegare nella maniera più diretta due punti di un percorso; le gallerie attraversando gli ostacoli come le montagne, mentre i ponti scavalcandoli come nel caso di una valle o un dirupo. Inoltre, il sistema viario su gomma si incontrerà con gli altri sistemi in luoghi chiamati nodi di scambio, in modo da consentire alle persone o alle merci di utilizzare differenti mezzi di trasporto per raggiungere la destinazione finale.

Area di servizio

Viadotto

Galleria

LE INFRASTRUTTURE FERROVIARIE

Le infrastrutture ferroviarie sono costituite prevalentemente da binari. Questi sono dei profilati metallici, conformati in modo tale da poter essere usati con la particolare sagoma delle ruote dei treni. Sono fissati a coppie attraverso delle traversine di legno o cemento armato. Per cui, le ruote metalliche dei treni, scorrono all’interno di questi percorsi obbligati senza poterne mai uscire e quindi senza poter mai deviare dal percorso stabilito. La distanza tra i binari, è chiamata scartamento ferroviario ed in Italia, come nella maggior parte dei paesi mondiali, è di 1435 millimetri all’interno.

Avere lo stesso scartamento consente ai treni di diverse nazioni di poter percorrere tratti anche al di fuori del loro Paese. Al contrario i treni spagnoli e russi che utilizzano scartamenti ferroviari diversi da quelli standard, non sono omologati per transitare negli altri Paesi per cui dovranno fermarsi ai confini nazionali.

Il treno, come detto non può mai uscire da questo percorso e le curve sono molto ampie per evitare deragliamenti ad alta velocità. L’unico modo per cambiare rotta, è attraverso gli scambi ferroviari che vengono azionati da terra e mai dal treno.

Inoltre, i binari tra di loro non sono mai attaccati, perché a causa della dilatazione termica cui sono sottoposti d’estate per effetto del Sole, finirebbero per deformarsi e spaccarsi.

Le linee ferrate sono una o più, parallele per dividere i flussi di traffico. Non sono presenti aree di sosta e di rifornimento, incroci o rotatorie, e questo fa si che i treni si spostino molto velocemente in aree protette. Infatti l’alta velocità e l’enorme massa che spostano richiedono lunghissimi percorsi di frenata per cui è vietato l’accesso alle aree ferroviarie e dove questo è impossibile, si realizzano appositi passaggi a livello che bloccano qualunque forma di traffico durante il passaggio del treno.

Passaggio a livello

I treni si fermano solo in prossimità delle stazioni ferroviarie. Si tratta di infrastrutture dotate di biglietteria, servizi, aree ristorazione e riposo, aree informative destinate ai passeggeri e dotate di lunghe banchine attraverso le quali è possibile avere accesso alle carrozze del treno.

Freccia Rossa 1000

Le stazioni possono essere di due tipi: di testa e di transito.

Le stazioni di testa sono quelle dove il treno arriva e il binario termina, per cui per ripartire deve invertire la direzione di marcia, come ad esempio alla Stazione Termini di Roma.

Stazione Termini Roma: testa del binario

Le stazioni di transito, sono invece quelle in cui il treno si ferma e riparte nella stessa direzione, sono le più diffuse.

Infine, abbiamo il sistema di pali con i cavi dell’alta tensione che forniscono l’alimentazione ai convogli ferroviari.

Quelle descritte sono le infrastrutture della grande rete ferroviaria nazionale, ma molte volte i mezzi su rotaia si trovano anche all’interno dei centri urbani. Se in superficie, si tratta di linee tranviarie, mentre se sono in galleria sono le metropolitane. Nel primo caso, la linea ferrata è soggetta al traffico cittadino, semafori, attraversamenti pedonali, incroci per cui ha una velocità ridotta tranne in quei tratti in cui viaggia su percorsi riservati, mentre nel secondo caso, scorrendo in gallerie sotterranee o in apposite sopraelevate, non ha mai contatti con altri sistemi di spostamento per cui rappresentano il mezzo più rapido in città. Le stazioni sono dislocate in prossimità di punti turistici o strategici per la città, come l’aeroporto o la stazione ferroviaria (nodi interzonali), sono tutte di transito tranne i capolinea.

Metroolitana

GUARDA I VIDEO:

LE INFRASTRUTTURE SU FUNE

Infine, sono da considerare sempre trasporti di tipo terrestre anche quelli su fune, come funivie, seggiovie, ski-lift che, pur essendo sospese su cavi, sono terrestri in quanto i piloni su cui sono sospese sono saldamente ancorati al terreno. Sono necessarie due stazioni, una di partenza e una di arrivo e lunghi sistemi di cavi sospesi su altissimi tralicci che consentono di superare gli ostacoli e le asperità del terreno rendendo semplice il raggiungimento di luoghi altrimenti irraggiungibili.

LE INFRASTRUTTURE NAVALI

Le navi si spostano essenzialmente sui mari o all’interno di grandi e profondi corsi d’acqua. Non necessitano per cui di grandi infrastrutture durante la navigazione, perché questa avviene in immensi spazi in genere privi di ostacoli. Le infrastrutture principali sono i porti, ossia i luoghi dove le navi attraccano lungo immense banchine dalle quali può facilmente avvenire il carico e scarico di merci e persone. I porti, possono poi essere divisi in zone in base al tipo di attività, quindi turistico, commerciale, sportivo. Sono costituiti da moli, che sono delle strutture in calcestruzzo armato realizzate per proteggere dalle intemperie e dal mare la rada, ossia lo spazio interno dove le navi sostano. Completano le infrastrutture navali, i sistemi di segnalazione della navigazione come il faro che serve a comunicare la posizione del porto durante la notte e i fanali posti all’ingresso per segnalare i moli.

LE INFRASTRUTTURE AEREE

Gli aerei, volando, non incontrano e non hanno infrastrutture in volo. Le uniche sono a terra e sono gli aeroporti. Sorgono in genere fuori dai centri abitati, sia per ragioni di sicurezza che di rumorosità. Sono divise in due aree di traffico, quella per i voli in partenza e quella per i voli in arrivo. Entrambe le aree sono dotate di due differenti zone; la zona di terra destinata ai passeggeri, con i check-in, check-out, dogana, ristorazione, negozi, servizi e i gates e la zona aerea, dove avviene la movimentazione degli aeroplani, che per motivi di sicurezza non accessibile ai passeggeri se non per i momenti dell’imbarco. Questo può avvenire attraverso mezzi su ruota come bus o navette, o attraverso tubi semovibili, i fingers, che consentono l’accesso direttamente al velivolo. La zona aerea, comprende le piste per il decollo e l’atterraggio, quelle di rullaggio per l’attesa e lo smistamento degli aeromobili, gli hangar per la manutenzione e i controlli degli aerei e la torre di controllo da cui si gestisce tutto il traffico aereo.

GUARDA I VIDEO:

LA LOGISTICA

La logistica, assolutamente ininfluente fino a qualche anno fa, ha assunto ultimamente un’importanza fondamentale nel sistema dei trasporti, perché rappresenta quell’insieme di operazioni necessarie a renderlo rapido, economico ed efficiente.

Per comprendere cos’è la logistica, proveremo a fare un esempio.

Immaginiamo di voler organizzare un viaggio di piacere per andare a visitare la città dei nostri sogni. Immaginiamo di voler visitare New York negli Stati Uniti partendo da Catania. Per poter realizzare questo viaggio ci dovremo collegare ad internet o recarci presso un’agenzia viaggi per poter iniziare la nostra organizzazione. Dovremo tenere in considerazione alcuni aspetti fondamentali quali il costo, i tempi di percorrenza, la tratta o la scelta della compagnia aerea.

La prima difficoltà nasce dalla considerazione che non esiste un collegamento aereo diretto tra Catania e New York, per cui dovremmo prima recarci in un’altra città che consenta questo collegamento, ad esempio Roma. Dovremo, quindi, acquistare più biglietti aerei, per le tratte Catania-Roma-Catania e Roma-New York-Roma. Ovviamente tra i voli dovrà esserci una finestra temporale di almeno quattro ore per consentirci di non perdere il volo internazionale in caso di scioperi o ritardi e per svolgere tutte le operazioni di check-in nell’aeroporto romano. Dovremmo anche considerare lo spostamento da casa all’aeroporto, che potrà avvenire tramite auto privata, taxi, bus o metropolitana e dall’aeroporto newyorkese JFK al centro città, usualmente in taxi.

Si proporranno a noi decine di soluzioni possibili, combinazioni di fattori, quali costi, orari, durata del volo, compagnie aeree, attraverso i quali ci dovremo districare per trovare la migliore combinazione possibile. Questa organizzazione prende il nome di logistica, senza la quale il nostro viaggio non potrebbe essere realizzato.

Immaginate questa semplice operazione organizzativa moltiplicata per i milioni o miliardi di pacchi spediti da aziende globali come ad esempio Amazon, che fa della puntualità ed efficienza delle consegne il suo punto di forza. Questo vi darà l’idea dell’importanza della logistica.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Lug 272018
 

Sempre più spesso è possibile individuare nelle nostre città delle strane auto che circolano per le strade. Si tratta delle auto a guida autonoma, dotate di telecamere e tecnologie avanzate che consentono a queste di girare liberamente e in sicurezza nel traffico tra le persone. Si tratta di un grande passo avanti verso il quale stanno lavorando molte aziende a livello internazionale e non solo nell’ambito dell’industria dell’auto.

Circolare in città, però risulta paradossalmente più semplice perché queste sono cablate, piene zeppe di telecamere, reti cellulari e GPS avanzati, tutte infrastrutture che aiutano i produttori nei loro test. Ma che succede se portiamo queste auto all’esterno dei centri abitati? Dove le reti sono meno presenti e veloci, i segnali giungono in maniera meno precisa e forte, le mappe non sono così dettagliate e aggiornate come nei centri abitati.

Un team di ricercatori del MIT, il Massachusetts Institute of Technology di Boston, ha sviluppato una nuova tecnologia capace di consentire la mobilità della auto a guida autonoma anche fuori dei centri abitati, li dove la mappatura non esiste o è incompleta. Si chiama CSAIL (Computer Science & Artificial Intelligence Lab) ed è un sistema che consente la navigazione in sicurezza delle auto autonome utilizzando solo sensori montati su questa e il GPS.

In pratica il CSAIL acquisisce i dati dal GPS, informazioni approssimate di qualche metro, dati che poi vengono integrati e completati dalle rilevazioni dei sensori che realizzano una mappatura molto più dettagliata dell’area di alcune decine di metri intorno alla vettura. Un computer consente allora all’auto di avanzare di pochi metri, quelli conosciuti dal rilevamento consentendole così di percorrere un tragitto tra due punti, quello della posizione attuale e quello della posizione da raggiungere. Il computer continua a elaborare i dati che giungono dal GPS e dai sensori facendo spostare di pochi metri per volta la vettura lungo il percorso stabilito fino alla destinazione finale.

Nei test la vettura e il sistema CSAIL si sono comportati benissimo, consentendo al veicolo di raggiungere sempre la destinazione finale senza l’intervento umano. CSAIL è solo in fase iniziale, ma i risultati consento ai ricercatori di poter ben sperare per i successivi passaggi e per un’applicazione finale su tutte le autovetture.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Giu 072018
 

L’aviazione civile sperimenta ogni giorno soluzioni nuove per rendere i viaggi sempre più comodi, sicuri ed economici. Si va da aeri di grandissime dimensioni come l’Airbus A380 (leggi: IL GIGANTE DEI CIELI – AIRBUS A380) ad aerei velocissimi (leggi: BOOM IL VOLO SUPERSONICO E’ QUI) a nuove soluzioni di spostamento in aria (leggi: POP.UP IL FUTURO DEL TRASPORTO).

Da General Electric arriva oggi un’altra novità; si chiama GeneralElectric 9X ed è un nuovissimo propulsore in fase di sperimentazione che attualmente è il più grande mai realizzato. GE9X ha un diametro di 3,40 metri quasi quanto una fusoliera di un aereo di medie dimensioni e secondo le previsioni della compagnia, dovrebbe equipaggiare i prossimi Boeing 777X che già detengono il record di aereo bi-motore più grande mai costruito.

Boeing ha effettuato il test del nuovo motore utilizzando un 747 appositamente modificato. Dei 4 motori, solo uno era il GE9X, mentre gli altri erano i motori standard lasciati appositamente perché se durante il test qualcosa non avesse funzionato sul nuovo propulsore, l’aereo avrebbe potuto continuare il suo volo.

Il 747 è decollato per il test da Victorville, in California e com’è possibile vedere il prototipo di GE9X è agganciato alla sua ala sinistra. Il test è durato 4 ore come stabilito e tutto è andato secondo le previsioni. Dall’ufficio stampa della Boeing si manifesta tanta soddisfazione per il successo della prova che con tanta cura era stata preparata per quel giorno.

Si tratta solo del primo di tanti test cui sarà sottoposto il gigantesco motore prima di poter essere utilizzato nei normali voli di linea e sostituire gli attuali propulsori. Ted Ingling, direttore generale della General Electric Aviation, la società che produce il motore, è entusiasta per il successo della prova e fa sapere di aver già ricevuto 700 prenotazioni, per un importo totale di 29 milioni di dollari.

Ma quali sono le caratteristiche di questo incredibile motore?

Innanzitutto è realizzato in fibra di carbonio e ceramiche di ultima generazione, capaci di resiste a enormi sollecitazioni e a temperature di oltre 1300°C. Questo per il responsabile della General Electric, Rick Kennedy, rappresenta un punto di enorme vantaggio perché più caldo è un motore a reazion,e maggiore è la sua efficienza in termini di consumo.

Le palette mobili saranno in fibra di carbonio, molto resistenti ma al tempo stesso molto leggere. Sulle altre caratteristiche e materiali impiegati vige il massimo riserbo sia da parte di General Electric che di Boeing.

Inoltre, la General Electric, con il GE9X supera il primato della concorrente Rolls Royce che lo deteneva avendo costruito il propulsore più grande dal diametro di 3,04 metri. Questo incredibile motore equipaggerà il nuovissimo Boeing 777X in preparazione da parte dell’azienda americana, aereo dall’incredibile apertura alare (oltre 71 metri), per la prima volta ripiegabile in modo da garantirgli la compatibilità con tutti gli aeroporti mondiali.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Apr 192018
 

Come ogni anno il C.E.S., ossia il Consumer Electronic Show di Las Vegas, è foriero di tante novità nel campo dell’elettronica e della tecnologia.

Anche qui, il tema della sostenibilità e del rispetto ambientale sono diventati quelli più gettonati e ogni sorta di invenzione fa riferimento alle sue caratteristiche di compatibilità ambientale.

Un tema del quale parliamo spesso anche noi è quello dell’inquinamento provocato dai mezzi di trasporto soprattutto quelli su strada e sul congestionamento delle grandi città a causa di un traffico sempre più caotico.

Le case automobilistiche, ma anche i ricercatori indipendenti tramite le piattaforme di croud-funding, stanno impegnando molte delle loro energie proprio nella creazione di un  nuovo mezzo di trasporto o per migliorare drasticamente quelli esistenti.

Si chiama Ujet ed è il nuovo concept di scooter elettrico prodotto dall’omonima casa lussemburghese a zero emissioni, silenzioso, facile da riporre e da ricaricare, perfetto per il traffico cittadino e per contribuire a decongestionarlo. Il progetto parte dal piccolo paese centro europeo, proprio perché questo governo sta promuovendo forti politiche sulla mobilità sostenibile e sta incentivando il mercato dei mezzi elettrici e smart.

L’e-Scooter prodotto nello stabilimento di Foetz in Lussemburgo, è un condensato di intelligenza, connettività, tecnologia e design. Utilizza per la prima volta pneumatici in tuball e nanotubi in carbonio, i più leggeri al mondo, capaci di raddoppiare la loro presa su terreni di ogni tipo aumentando così la trazione del mezzo e parallelamente la sicurezza e le prestazioni.

Le ruote orbitali senza raggio sono dotate di un sistema frenante e di sospensioni capaci di garantire  un comfort di guida altissimo, il motore elettrico è capace di adattarsi ad ogni tipo di percorso garantendo alte prestazioni e grande accelerazione anche in salita. Tutto questo grazie ad un avveniristico telaio ricavato direttamente dalle soluzioni aerospaziali; fibra di carbonio miscelata a leghe metalliche leggere che, realizzano un materiale il 40% più leggero dell’alluminio, hanno consentito di costruire uno scooter il cui peso complessivo è di 43 chilogrammi.

Ma le novità tecnologiche non sono di certo finite qui. Totalmente smart, l’Ujet, è dotato di tutte le ultime innovazioni nel campo digitale. GPS per la localizzazione, il parcheggio smart, il tele-controllo. Un sistema di antifurto collegato allo smartphone tramite app iOS o Android, consente il controllo in remoto del mezzo, la sua attivazione o blocco e messaggistica in tempo reale in caso di spostamento o manomissione non autorizzata dello scooter.

Un sistema di sensori distribuiti su tutto il corpo del mezzo, monitorano ogni fase del viaggio ed ogni parte del ciclomotore, avvisando l’utente di eventuali anomalie. L’app sullo smartphone registra anche dati utili quali ricarica della batteria, calcola l’autonomia rimasta, le emissioni di anidride carbonica risparmiate e tanto altro per aiutare il conducente a mantenere il mezzo in perfetta efficienza.

Anche l’intrattenimento la fa da padrona. GPS, wi-fi, bluetooth, 3G alcune delle possibilità di connessione. Un display touch consente di attivare la navigazione, lo streaming musicale, la possibilità di telefonare e di vedere le immagini riprodotte dalla videocamera frontale di cui l’Ujet è dotato.

Ma l’Ujet è un veicolo elettrico e quindi la batteria è sicuramente il componente fondamentale. Lo scooter è dotato di due differenti tagli, uno più piccolo che garantisce circa 70 km di autonomia, mentre l’altro più grande circa 150 km. Il vantaggio è dovuto essenzialmente alla leggerezza del mezzo e alle componenti utilizzate nella realizzazione della batteria.

Questa è rimovibile e trasportabile quasi fosse una valigia, in modo da facilitarne il trasporto. Cosa importantissima, la ricarica è effettuabile da qualunque presa, quindi non richiede apposite colonnine e se si acquista il caricabatteria veloce venduto dalla casa madre, i tempi di ricarica si accorciano diventando di circa un’ora e mezza per la piccola e di tre ore per la grande.

Il mezzo è quasi pronto per la commercializzazione che avverrà presumibilmente entro la metà di quest’anno. I prezzi sono tra l’altro già definiti. La versione con la batteria più piccola costerà 8.900 dollari, mentre quello con la batteria di maggiore capacità, 9.900 dollari.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Feb 222018
 

L’auto elettrica è sicuramente la scommessa per il futuro del trasporto proprio perché i livelli di inquinamento oramai raggiunti sono intollerabili per il nostro pianeta. Una scommessa che parte da lontano, ma che ha subito una forte accelerazione nell’ultimo periodo grazie anche agli annunci del visionario miliardario Elon Mask che ha già presentato la sua Tesla. Tanti sono stati i problemi che hanno rallentato o fatto posticipare la creazione di auto di questo tipo. Innanzitutto il peso e l’ingombro delle batterie, poi il sistema di ricarica, l’autonomia ed infine, per quegli automobilisti particolarmente esigenti, le prestazioni. Già con la Tesla, molti di questi problemi sono stati risolti, soprattutto quello prestazionale.

Sulle riviste sportive, si leggono sempre comparazioni sulle velocità massime raggiungibili da questi bolidi e soprattutto si confronta il tempo impiegato per passare da velocità zero a 100 km/h ritenuto un parametro di valutazione importante. Su questo aspetto, le auto elettriche, hanno sempre avuto la peggio, ma fino ad ora. Infatti, sempre la Tesla di Elon Mask vanta tempi di poco superiori ai due secondi, ma questo record è stato da poco infranto da un nuovo bolide elettrico di concezione nipponica.

Su questo aspetto, la ASPARK OWL, questo è il nome dell’auto giapponese, ha battuto tutti. Infatti, un video che gira sulla rete mostra come questa macchina elettrica raggiunga la velocità di 100 km/h in meno di 2 secondi, un vero razzo.

Il video, mostra questo eccezionale risultato, no su di una pista attrezzata per l’evento, ma in uno spazio piuttosto angusto al di fuori di un capannone industriale e su un tracciato non propriamente adatto ad una verifica di questo tipo.

Il risultato della telemetria non lascia dubbi: 100 km/h in solo 1,92 secondi. I critici hanno comunque affermato che il risultato è stato raggiunto anche grazie all’uso di pneumatici slick da gara e che queste prestazione dovrebbero essere inferiori se effettuate con pneumatici stradali.

Approfondimento: uno pneumatico slick, che in inglese significa liscio, è un tipo di pneumatico che non ha scanalature sul battistrada. In questo modo, si ha una maggiore superficie d’aderenza sull’asfalto, massimizzando la trazione.

Attualmente la Aspark Owl è in fase di prototipo, ma la società giapponese che la produce ha l’intenzione di realizzarne un primo blocco di 50 esemplari per la vendita. Anche da questo punto di vista la competizione è iniziata. Elon Mask ha promesso che la sua Tesla Roadster prevista per il 2020, raggiungerà lo stesso tipo di prestazione.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Feb 092018
 

Da sempre l’uomo ha desiderato di poter volare, ma la natura non lo ha fornito degli strumenti adatti a compiere questa azione. Dallo studio, però, dei volatili, dalle loro caratteristiche e dalla loro conformazione, ha cercato di carpire i segreti che consentono a questi esseri di librarsi e di spostarsi in aria. Oggi, dopo decenni di sperimentazione e tentativi, l’uomo vola liberamente da una parte all’altra del mondo utilizzando, miracoli di ingegneria, chiamati aerei.

Ma com’è possibile volare? In realtà, si tratta di un fenomeno puramente fisico, ed una volta compreso il segreto di come questo avviene, riuscire a realizzarlo è diventato relativamente semplice, anzi ci si è spinti oltre realizzando aerei più grandi e veloci (vedi Il Gigante dei Cieli: AIRBUS A380), pieni zeppi di tecnologie e comfort.

LA PORTANZA

Il prodigio del volo, è possibile grazie ad un fenomeno fisico chiamato portanza. Essa è definita come “la spinta perpendicolare alla direzione del moto che si produce per effetto del flusso dell’aria intorno all’ala“. Questo fenomeno, sostiene in aria, i grandi aerei ma allo stesso modo anche gli alianti o gli uccelli.

Il segreto sta nella differenza di pressione tra la parte superiore e quella inferiore dell’ala, ma questo è solo un aspetto del fenomeno che consente agli aerei di restare in aria. L’altro aspetto importante, è l’angolo di inclinazione. L’ala, infatti, deve risultare inclinata verso l’alto di un angolo chiamato angolo di attacco per poter creare una sufficiente portanza in grado di far superare all’aereo la forza di gravità. La dimensione di quest’angolo deve essere studiata attentamente in modo da massimizzare la portanza e rendere massima la differenza di velocità dell’aria tra la faccia superiore e quella inferiore dell’ala.

L’AEREO E LE SUE ALI

E’ proprio la sagoma dell’ala che, fa in modo (come si vede dalle figure precedenti) che l’aria scorra più velocemente su una superficie (superiore) rispetto che sull’altra (inferiore). Anzi, le curve di flusso nella parte superiore, sempre a causa della forma, tendono a schiacciarsi una vicino all’altra. Quindi data la maggiore distanza da compiere, l’aria nella parte superiore è costretta ad accelerare. Aumentando la velocità, cala la pressione. Al contrario, nella parte inferiore, l’aria passa più lentamente  e la pressione aumenta.

Per un principio della fisica, se sulla faccia superiore dell’ala, chiamata dorso, la pressione dell’aria è minore che in quella inferiore chiamata ventre, la forza risultante crea un effetto di risucchio verso l’alto, che aumentando, supera l’intensità della forza di gravità, consentendo all’aereo di librarsi in aria e mantenersi in volo.

Durante un volo, sono 4 le forze che agiscono sul velivolo. La portanza, ossia il risucchio verso l’alto dovuto alla differenza di pressione sull’ala che, compensa le forze che trascinerebbero l’aereo verso il basso cioè il suo peso e la forza di gravità. E poi, la forza motrice o trazione, ossia la spinta data dai motori che deve compensare l’attrito o resistenza causato dall’aria che impatta sulla superficie dell’aereo.

Una volta superate le fasi iniziali, durante quello che viene chiamato volo orizzontale, le forze debbono essere a due a due uguali. La forza motrice dovrà essere uguale all’attrito, mentre la portanza dovrà essere uguale al peso. Se la spinta dei motori aumenta, l’aereo accelera, se la portanza cresce, l’aereo sale di quota.

Bisogna comunque tener presente anche un altro fattore, la rarefazione dell’aria. Infatti, salendo di quota, l’aereo incontra aria sempre più rarefatta, con conseguente diminuzione dell’attrito. Questo lo porta, a parità di spinta, ad accelerare ma è anche costretto a mantenere questa maggiore velocità per compensare la perdita di portanza che lo costringerebbe inevitabilmente a perdere quota.

La portanza che entra in gioco durante tutto il volo, dipende da due fattori chiave: da un lato la velocità dell’aereo rispetto all’aria e dall’altro dalla conformazione e inclinazione dell’ala.

Ma la velocità dell’aereo cambia durante tutte le fasi del volo, quindi bisognerà adattare l’ala a questi differenti momenti.

Schema parti mobili dell’ala

Per questo è dotata di tutta una serie di parti mobili come gli slat e i flap o ipersostentatori che alle estremità anteriori o bordo d’attacco e posteriori o bordo di uscita o di fuga, cambiano alla bisogna il profilo alare e la sua superficie in modo da consentire all’aereo di adattarsi a tutte le situazioni del volo.

Ala con parti mobili chiuse ed estese

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Gen 292018
 

A volte le cose apparentemente più stupide, sono quelle che ci creano la maggior parte dei problemi durante la nostra quotidianità. Quanti di noi non hanno sperimentato in città il problema delle buche stradali o dei sampietrini sconnessi o addirittura mancanti. Già a piedi queste sono fastidiose, ma con scooter e biciclette diventano pericolose soprattutto quando a causa della pioggia queste mancanze o sconnessioni non sono visibili.

Inoltre, la manutenzione stradale, costa ai comuni che debbono metterla in pratica tutti i giorni, parecchio denaro e soprattutto gli interventi non sono mai rapidi e definitivi se non al costo di rendere la strada, una volta perfettamente asfaltata, un insieme di toppe con differenti livelli, materiali non sempre idonei e pronte a riaprirsi alla successiva pioggia.

Forse a causa di disavventure capitategli durante la sua vita, il visionario inventore russo Dahir Semenov, competente esperto ingegnere (leggi anche: GLI UFO SBARCANO IN CITTA’), si sarà ritrovato a pensare a come risolvere questo piccolo ma noiosissimo problema per ognuno di noi.

La sua creazione, un enorme camion dotato di una serie di attrezzi specializzati per le riparazioni stradali. Uno speciale martello pneumatico, una serie di frese e seghe particolari, agiscono in pochi secondi sulla buca ritagliandola e sagomando un foro perfettamente regolare con una forma stabilita dall’operatore.

A questo punto una potente pompa aspiratrice, preleva dal terreno tutti i residui, sassi, pezzi di asfalto e quant’altro lasciando la buca sagomata perfettamente pulita.

La terza fase è quella del riempimento della buca. Una toppa di asfalto speciale, che ricalca la buca appena tagliata, viene adagiata dalla macchina all’interno del foro. Una enorme piastra scaldante, quasi un grande ferro da stiro, viene posizionata dalla macchina sulla toppa riscaldandola. In questo modo i due tipi di asfalto si saldano insieme in maniera precisa e definitiva, senza interruzioni, avvallamenti o parti sorgenti.

Il bello di questa operazione è che viene eseguita in pochi secondi, ripulendo perfettamente la zona, e ottenendo un risparmio economico non indifferente oltre a poter eseguire l’intervento in tempi molto brevi.

Gli unici dubbi che sono stati manifestati alla presentazione di questa originale idea, sono quelli legati al contesto, e cioè alla dimensione delle buche, a volte vere e proprie voragini e alla loro profondità. Vedremo se Semenov riuscirà con il tempo ad affrontare anche queste problematiche.

GUARDA I VIDEO:

PUOI LEGGER ANCHE:
Set 222017
 

In attesa dell’Hyperloop One di Elon Mask, di cui abbiamo più volte parlato su queste pagine (vedi: PUOI LEGGERE ANCHE), il mondo tecnologico non resta a guardare e ogni anno nei paesi dell’estremo oriente, si succedono records di velocità e nuovi sistemi di spostamento su rotaia.

E’ di pochi giorni fa l’annuncio della autorità cinesi dell’entrata in servizio del Fuxing, il treno che attualmente detiene il record mondiale di velocità. Fuxing in lingua cinese vuol dire “ringiovanimento” proprio a voler indicare un miglioramento e un aggiornamento del sistema dei trasporti rispetto al passato.

FUXING01

Fuxing, inizialmente collegherà la capitale Beijing con l’altra megalopoli cinese di Shanghai. Già le due città erano collegate con un sistema ad alta velocità, ma il Fuxing, spiega la China Railway Corporation, permetterà di coprire la stessa distanza in circa mezz’ora in meno.

Fuxing correrà sui binari alla incredibile velocità di 350 chilometri orari di media con punte superiori ai 400 Km/h, percorrendo i 1318 chilometri tra le due città in poco meno di 4 ore.

Questo treno, non è soltanto il più veloce esistente in questo momento, ma raggiunge anche elevatissimi livelli di automazione e servizi di bordo. Sarà infatti disponibile gratuitamente una rete wi-fi ad alta velocità, porte USB per tutti i passeggeri e ogni tipo di comfort. Un sistema di sensori pari a oltre 1500, permetterà ad un sistema di controllo computerizzato di analizzare tutti i momenti del viaggio e le componenti del treno, in modo da attivare istantaneamente i sistemi di sicurezza, che lo rallenteranno o fermeranno del tutto in caso di registrazione di anomalie.

FUXING02

Il 21 settembre questo gioiello è entrato in funzione e coprirà la tratta Beijing-Shanghai con sette corse ad andare e sette a tornare giornaliere.

Un meraviglia tecnologica che raggiunge un nuovo livello di qualità nei trasporti e apre la strada al futuro. Nuovi concorrenti, infatti, si stanno affacciando sul mercato al fine di rendere concorrenziale rispetto ai sistemi aerei il trasporto su terra. A parte l’Hyperloop, già è quasi pronto in Giappone l’erede del famosissimo Shinkansen, il Maglev (acronimo delle parole magnetic levitation) che corre sospeso su binari magnetici alla incredibile velocità di 600 Km/h e che entrerà in servizio nel 2027.

GUARDA I VIDEO:

Mag 272017
 
Vahana01

Airbus Vahana

Abbiamo da poco parlato di Vahana (Airbus Vahana: l’aereo che vola da solo), il veicolo aereo a guida autonoma che Airbus Industries sta testando per la movimentazione in città. Lo scopo di Airbus è quello di risolvere il problema del traffico e del congestionamento delle città a causa della quantità enorme di veicoli in circolazione.

Ma oltre a Vahana, altri progetti sono in cantiere da parte del colosso dell’aviazione europea; all’ultimo salone dell’Auto di Ginevra, Airbus ha presentato un veicolo rivoluzionario, un concept che modifica completamente il modo di viaggiare e spostarsi in città: sto parlando di Pop-Up.

Si tratta di un veicolo di trasporto autonomo modulare costituito da tre componenti che si combinano tra di loro, totalmente green. Realizzato con l’eccellenza italiana del design, la Italdesign, Pop-Up è formato da una capsula in fibra di carbonio con due posti passeggeri, una base elettrica a quattro ruote e un modulo aereo  dotato di quattro rotori, anch’essi elettrici, per il decollo verticale.

POPUP01

La capsula passeggeri, può agganciarsi in pochi istanti o al modulo terrestre o al modulo aereo.

POPUP03

Agganciata al modulo terrestre, la capsula passeggeri, diventa una piccola city car autonoma nel senso che, il passeggero che deve effettuare lo spostamento, programma attraverso il proprio smartphone il punto della città in cui deve recarsi; in questo modo il modulo terrestre viene a prelevarci per condurci al luogo di destinazione. Se la meta è troppo lontana dal punto di partenza il modulo aereo arriverà e aggancerà la capsula e come un drone lo solleverà per trasportarlo velocemente nelle vicinanze del luogo di destinazione.

POPUP06

Quindi in base alle necessità o alla distanza, il modulo Pop-Up, sceglierà il sistema di trasporto preferibile. Il cuore di questo sistema è una centrale di intelligenza artificiale in grado di programmare e controllare gli spostamenti di tutte le capsule disponibili e gestire in tempo reale il traffico sia terrestre che aereo. La piattaforma farà anche in modo da rendere lo spostamento personalizzato e piacevole per gli occupanti delle capsule. Il vantaggio non è indifferente, perché il modulo aereo può prelevare la capsula in qualunque momento e in qualunque luogo per cui se ci si trova bloccati in mezzo al traffico, il modulo aereo interviene preleva la capsula e il modulo terrestre torna da solo alla stazione di parcheggio.

POPUP04

Il sistema potrebbe essere messo in commercio già tra poco tempo secondo i general manager di Airbus Mobility, perché sia la tecnologia elettro-meccanica, il design che il sistema di propulsione sono già da adesso realizzabili e funzionali.

POPUP08

Altra cosa invece è il sistema di controllo; manca infatti tutta l’infrastruttura da realizzare nelle metropoli, nonché i sistemi di controllo del traffico e tutta la normativa compatibile con questo nuovo sistema di trasporto ibrido.

POPUP07

Il sistema progettato da Airbus Industries e Italdesign è avveniristico ma nasce dall’esigenza di risolvere uno dei più gravi problemi che affliggono le nostre grandi città: il traffico congestionato. Chissà se nel giro di pochi anni questo sistema non possa rivoluzionare questo settore come i cellulari lo hanno fatto con quello delle comunicazioni?

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
Mag 132017
 

I viaggi spaziali sono un sogno dell’umanità da sempre e l’uomo cerca soluzioni per rendere questa possibilità fattibile, poco pericolosa e soprattutto più economica.

Oggi per andare nello spazio, i razzi che lanciamo dal nostro pianeta, sono basati su un sistema che utilizza ossigeno liquido che entra in combinazione con il combustibile all’interno della camera di combustione. Solo per far sollevare il razzo dalla superficie terreste e vincere la forza di gravità occorrono normalmente circa 250 tonnellate di ossigeno liquido senza parlare del combustibile e soprattuto, una volta superata la prima fase del lancio, quello rimanente nei serbatoi viene scartato con enormi sprechi di denaro.

SABRE08

Ma nel panorama mondiale qualcosa si sta muovendo per superare i limiti dell’attuale sistema.

L’E.S.A., l’Agenzia Spaziale Europea, in collaborazione con la Reaction Engines inglese, sta progettando S.A.B.R.E., sigla che sta per Synergistic Air-Breathing Rocket Engine, ossia un nuovo tipo di motore in grado di rivoluzionare il modo in cui i razzi arrivano nello spazio.

Il principio di funzionamento è abbastanza semplice; S.A.B.R.E., sfrutterebbe aria atmosferica nelle prime fasi del lancio per poi trasformarsi in un razzo convenzionale nella seconda fase al fine di fornire la spinta necessaria al razzo per farlo uscire dall’atmosfera terrestre superando la forza attrattiva del pianeta.

SABRE07

Più complesso è il sistema per ottenere questo processo; infatti, comprimere l’ossigeno dell’atmosfera a circa 140 atmosfere e spingerlo nelle camere di combustione, è abbastanza semplice ma comporta un forte innalzamento della temperatura, calore che potrebbe compromettere il funzionamento dei motori. E’ necessario, quindi, raffreddare l’aria all’interno di uno scambiatore di calore in modo che questa possa far bruciare il combustibile a idrogeno al posto dell’ossigeno liquido fino a quando il razzo non raggiunge la quota di 25.000 metri dove l’aria diventa più rarefatta. A questo punto S.A.B.R.E., torna ad essere un razzo convenzionale non potendo più utilizzare l’ossigeno atmosferico.

SABRE02

Il problema di questo avveniristico progetto sono appunto gli scambiatori di calore. Abbastanza diffusi nel settore industriale in questo caso hanno il compito di dover raffreddare l’aria in entrata a oltre 1.000°C in un centesimo di secondo a -150°C evitando la formazione di brina o ghiaccio. Inoltre, dovrebbero avere un peso di circa 100 volte inferiore rispetto a quelli utilizzati in ambito industriale, proprio perché dovrebbero essere montati in sistemi aerospaziali, dove il peso è una variabile fondamentale.

Forti investimenti per la realizzazione di S.A.B.R.E. sono stati attivati dall’Agenzia Spaziale Europea, convinta, insieme ai partners inglesi che questa tecnologia farà fare enormi passi avanti ai programmi spaziali e soprattutto perché consentirà di ottenere nuovi propulsori per l’aviazione a basso costo e a basse emissioni.

SKYLON

SKYLON

Skylon, ossia lo Shuttle Spaziale in grado di decollare come un aereo e di rientrare nell’atmosfera e atterrare nuovamente, sarebbe una dimostrazione della bontà di questo progetto.

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
Feb 272017
 

LIDAR_Scroll

Oramai sentire parlare di veicoli a guida autonoma è quasi quotidiano e anche su queste pagine ne abbiamo parlato diverse volte. In questa direzione si sono mosse due grandi case produttrici a livello internazionale e hanno presentato al CES di Las Vegas queste loro innovazioni. La Koito Manufacturing grande produttore internazionale di fari per le autovetture e Quanergy Systems produttore a sua volta di sensori LiDAR acronimo di Laser Imaging Detection and Ranging hanno unito i loro sforzi per produrre un faro automobilistico di nuova concezione che incorpora i sensori LiDAR S3 allo stato solido.

LIDAR02

Lo scopo è quello di realizzare un sistema in grado, attraverso il telerilevamento, di tracciare una mappatura 3D dell’ambiente intorno alla vettura in modo da crearne una visuale tridimensionale in tempo reale fornendo informazioni dettagliate e tracciamento degli oggetti.

Il sensore può essere incorporato nel faro senza alterarne l’estetica e il faro può a sua volta proteggere il sensore da acqua, sporco, polvere attraverso l’uso di spazzole tergifaro.

LIDAR03

L’uso di questi fari consentirà nelle prossime vetture di mettere a disposizione del conducente funzioni definite di “percezione” quali mappatura, pianificazione di percorsi, localizzazione, rilevamento e classificazioni di oggetti.

PrintQuesto sistema va ad integrarsi con gli avanzati sistemi ADAS, Advanced Driver Assistance Systems, tipici dei veicoli a guida autonoma. Questi sistemi, oggi, sono già in grado di riconoscere e classificare differenti tipologie di oggetti, per cui sono in grado di distinguere un’autoambulanza da un furgone per trasporti, segnalare al pilota eventuali condizioni pericolose lungo il percorso e in alcuni casi addirittura intervenire fermando del tutto l’autovettura al fine di garantire l’incolumità degli occupanti. Sofisticatissimi algoritmi computazionali, riescono a fare oggi molte delle cose che fa normalmente il conducente, con un fattore predittivo superiore a quello umano. L’integrazione di questi sensori sulla scocca dell’auto rappresenterà un ulteriore passo avanti in questa direzione e contribuirà a rendere ancora più sicure le nostre strade e la nostra guida.

Il progetto del sensore LiDAR S3 è stato premiato al recente CES 2017 di Las Vegas con il Best of Innovation Award nella categoria autoveicoli.

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Feb 272017
 

A380_03

15 ottobre 2007 è una data storica. I cieli del mondo vedono librarsi per la prima volta in aria un nuovo gigante, anzi il gigante dei giganti: l’Airbus A380, il primo aereo al mondo dotato di doppio ponte capace di trasportare a pieno carico fino a 850 passeggeri.

L’A380 nasce con lo scopo di risolvere i problemi del trasporto aereo sempre più congestionato di tratte e persone, ma anche per competere con lo strapotere quarantennale di Boeing con il suo aereo di punta, il 747.

38413707airb_20010628_04889.jpg

La presentazione al grande pubblico è avvenuta il 16 gennaio 2005, ma l’Airbus è stata costretta a rinviare ripetutamente l’uscita del velivolo per diverse problematiche soprattutto ai sistemi elettrici, un vero proprio dedalo di cavi e connessioni.

A380_06

Il gigantesco aereo è grande in tutto. Per la prima volta, l’apertura alare supera la lunghezza. Questa è stato il primo problema per Airbus che ha dovuto ricorrere ad uno stratagemma per consentire al suo gigante di poter essere ospitato in tutti gli aeroporti internazionali senza dover riprogettare gli hub. L’ala nella parte finale, infatti, è stata ripiegata; questo ha consentito di riportare la lunghezza all’interno degli standards degli aeroporti e a fatto si che questa fornisse maggiore stabilità in volo ad alta velocità.

A380_01

L’A380 è lungo 73 metri e alto più di 24. L’apertura alare è di 79,8 metri e il diametro della fusoliera 7,14. Il doppio ponte consente di ospitare un numero di passeggeri che varia da 525, in configurazione standard con la suddivisione in 3 classi, a 853 in configurazione charter con classe unica. Il ponte principale misura 49,7 metrici lunghezza mentre quello superiore 47,9; tutto questo spazio si traduce in comodità e possibilità da parte delle compagnie aeree di offrire ai clienti più esigenti spazi unici attrezzati con suite, docce, sale gioco con biliardo, lounge-bar e tanto altro.

Sono necessari 2 piloti (4 per le lunghe tratte) e 22 assistenti di cabina per gestire l’enorme spazio e la grande quantità di persone a bordo.

La tecnologia la fa da padrona; anche la classe economy è dotata di molti comfort in più e soprattutto spazio tra i sedili. Intrattenimento di bordo, wi-fi, videocamere esterne per vedere comodamente le fasi del viaggio e tanto altro. Insomma, l’A380 apre una nuova era per il viaggio aereo.

A380_04

Anche la dotazione meccanica è di prim’ordine; vengono utilizzati 4 turbofan Engine/Alliance GP7000 o, in alternativa, 4 turbo-reattori Rolls-Royce Trent 900. Questi spingono l’aereo a velocità di crociera a Mach 0.85, ovvero a circa 850 Km orari e sono capaci di fargli percorrere una distanza di 15.200 Km in un’unica tratta consumando il 15-20% in meno di un 747 con emissioni nell’atmosfera ridotte del 13%. Viaggia inoltre più in alto, 35mila piedi (circa 11.000 metri) è molto più silenzioso e necessita di meno spazio per atterrare e decollare.

Lo sviluppo di questo gigantesco aereo è avvenuto negli impianti di Tolosa in Francia appositamente costruiti da Airbus per la realizzazione di questo velivolo. L’avvio del progetto è del giugno 1994 e solo nel 2004 dopo dieci anni di progettazione, è stata approntata la catena di montaggio.

I costi sono stati enormi, basti pensare che l’aereo è composto da circa 4 milioni di pezzi, con 2,5 milioni di componenti provenienti da 1.500 aziende di 30 nazioni. Ogni aereo costa circa 350 milioni di dollari.

10 miliardi di investimento complessivo che si traducono nella necessità di vendere almeno 250 aerei da parte di Airbus per rientrare nelle spese.

A380_02

Nel 2006 il primo Airbus A380 è stato consegnato alla compagnia aerea Singapore Airlines che ebbe anche l’onore di effettuare il primo volo commerciale di questo gigante il 15 ottobre 2007 sulla tratta Singapore-Sydney.

Sono diverse oggi le compagnie aeree che utilizzano l’A380 e molte altre si stanno aggiungendo piano piano. L’aereo ha oramai superato i dieci anni di servizio e non si sono riscontrati incidenti, se non lievi, sul suo percorso di volo tranne che per l’incidente occorso ad un A380 della Qantas, la compagnia aerea australiana, che durante il volo vide esplodere uno dei motori a causa di un difetto di progettazione di un tubicino che trasportava olio. Il volo si concluse con un atterraggio di emergenza ma nessun danno all’aereo ne alle persone a bordo.

A380_08

La compagnia aerea che maggiormente utilizza gli A380 oggi è la Emirates, la compagnia dell’emirato di Dubai e per questa compagnia vola il primo pilota italiano accreditato per gli A380, il comandante Michele D’Ambrosio.

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Feb 242017
 

Concept01

Sembra uscita da un film di fantascienza e invece è la concept car di un grande marchio di auto giapponesi. Si chiama Concept-I e si tratta di un’autovettura che estende il concetto di dotazioni e accessori in auto portandoli ad un livello più alto.

Concept02

Dotata di un sistema avanzatissimo di intelligenza artificiale, la Concept-I, è capace di apprendere dalle abitudini e necessità del proprio guidatore e migliorare le proprie performance anticipandone le necessità, fornendogli suggerimenti e semplificandogli la vita al volante.

Concept03

Come molte altre vetture, la Concept-I dispone di differenti modalità di guida, manuale e automatica, ma dispone anche di un nuovo sistema di interazione con il conducente in grado di aumentare notevolmente il livello di sicurezza e il supporto automatico alla guida in caso di pericolo o necessità.

Concept05

Concept-I, attraverso un sofisticato sistema di sensori, stabilisce una comunicazione quasi sensoriale con il conducente dell’autovettura attraverso l’uso di stimoli visivi e tattili. Può controllare lo stato del conducente durante tutta la permanenza sull’auto e le condizioni della strada in modo da avvisarlo tempestivamente in caso di colpo di sonno, ostacolo o distrazione alla guida.

Concept04

Il segreto di tutta questa tecnologia si chiama Yui ed è il sofisticato software di intelligenza artificiale di cui è dotata l’autovettura. Yui è in grado, attraverso un visore sul cruscotto anteriore e molteplici sistemi visivi posti in tutta l’autovettura di creare questo nuovo sistema comunicativo. Luci, colori e suoni interagiscono con il conducente informandolo, istruendolo e dialogando con lui in ogni momento. Yui è in grado di comunicargli lo stato dell’auto, visualizzare sul parabrezza le informazioni di viaggio, salutarlo augurandogli buongiorno, ossia diventare quasi un compagno di viaggio che apprende dalle sue abitudini e collabora con lui durante il tragitto.

GUARDA I VIDEO:

 

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO: