Mag 192025
 

Immagina un reattore nucleare che non solo produce energia pulita e sicura, ma lo fa ispirandosi al campo magnetico terrestre. La startup americana OpenStar sta sviluppando un prototipo di reattore a fusione compatto che replica la magnetosfera del nostro pianeta per contenere il plasma ad altissime temperature.

A differenza dei tradizionali Tokamak, che utilizzano strutture toroidali complesse, questo innovativo approccio sfrutta una configurazione sferica, avvolgendo il plasma con linee di campo magnetico naturali. Il risultato? Un sistema potenzialmente più stabile, sicuro e scalabile, con minime scorie radioattive.

Se il prototipo dimostrerà di funzionare efficacemente, potremmo essere alle porte di una rivoluzione energetica: reattori a fusione installabili su scala locale, fornendo energia pulita e distribuita.

Scopri tutto su questo nuovo tipo di reattore a fusione leggendo l’articolo completo…(clicca sull’immagine qui sotto):


Clicca sull’icona qui sotto per accedere al blog della Lattes “ilTECHNOlogico” a cura del prof. Davide Betto

Apr 182025
 

Riscaldare la casa sfruttando solo il sole? Si può fare, e la risposta sono i captatori solari: dispositivi semplici, sostenibili ed efficienti che trasformano l’energia solare in calore, senza elettricità né combustibili. Una tecnologia pulita, silenziosa e innovativa, perfetta per parlare di energia, ambiente e futuro nelle aule scolastiche.
Un’idea che unisce scienza, tecnologia e sostenibilità in un’unica soluzione smart. Da leggere, condividere e… sperimentare! 🌞🏠

Se vuoi leggere l’articolo completo…(clicca sull’immagine qui sotto per entrare nel futuro dell’energia domotica):


Clicca sull’icona qui sotto per accedere al blog della Lattes “ilTECHNOlogico” a cura del prof. Davide Betto

Apr 162025
 

Reflect Orbital, una startup californiana, sta lavorando a una rivoluzione energetica: usare satelliti con specchi riflettenti per proiettare la luce del Sole sulla Terra anche dopo il tramonto. Il loro obiettivo? Rendere i pannelli fotovoltaici operativi 24 ore su 24, superando uno dei limiti storici dell’energia solare.
Un mix futuristico di scienza, tecnologia e sostenibilità che apre nuovi scenari per l’approvvigionamento energetico globale.

Un tema perfetto per ispirare studenti e docenti delle scuole secondarie, tra fotonica, scienze dello spazio e cambiamento climatico. Il futuro si illumina… anche di notte!

Se vuoi scoprire l’articolo completo…(clicca sull’immagine qui sotto per entrare nel futuro dell’energia solare):


Clicca sull’icona qui sotto per accedere al blog della Lattes “ilTECHNOlogico” a cura del prof. Davide Betto

Apr 042025
 

In un mondo dove oltre 2 miliardi di persone non hanno accesso all’acqua potabile, la tecnologia HelioWater emerge come una soluzione rivoluzionaria. Questa innovativa sfera di vetro utilizza l’energia solare per purificare acqua da qualsiasi fonte, rendendola sicura per il consumo umano.

Ogni unità può produrre fino a 10 litri di acqua al giorno, offrendo una soluzione concreta per le comunità con difficoltà di accesso alle risorse idriche.

Perché è importante? HelioWater rappresenta un passo avanti verso la sostenibilità e l’autosufficienza energetica. Funziona senza elettricità, ha una manutenzione minima e una durata di oltre 30 anni. È ideale per aree remote, regioni colpite da disastri naturali o zone senza infrastrutture elettriche.

Scopri di più su questa tecnologia che potrebbe cambiare il futuro dell’approvvigionamento idrico nel mio ultimo articolo….(clicca sull’immagine qui sotto per scoprire di più):


Clicca sull’icona qui sotto per accedere al blog della Lattes “ilTECHNOlogico” a cura del prof. Betto

Apr 032025
 
Immagina un pallone aerostatico capace di catturare l’energia del sole dall’alta quota e trasformarla in elettricità! 🚀 Grazie alla tecnologia BIPVS (Building-Integrated Photovoltaics System), l’energia solare non si ferma più ai tetti degli edifici, ma raggiunge nuove altezze con un sistema innovativo che potrebbe rivoluzionare la produzione di energia rinnovabile.
Questa incredibile soluzione potrebbe superare i limiti tradizionali del fotovoltaico, raccogliendo più luce e ottimizzando la produzione energetica. Un passo decisivo verso un futuro più sostenibile! 🌍✨
Scopri come funziona e quali potrebbero essere le sue applicazioni leggendo questo avvincente articolo!….(clicca sull’immagine qui sotto per entrare nel futuro dell’energia sostenibile)


Clicca sull’icona qui sotto per accedere al blog della Lattes “ilTECHNOlogico” a cura del prof. Betto

Mar 012023
 

In un laboratorio californiano è stato condotto un esperimento molto importante, definito una svolta storica per l’umanità. I media ne hanno dato grande risalto e lo stesso Dipartimento americano ha indetto una conferenza stampa in diretta da Washington per annunciare al mondo il grande risultato. Scopriamo di cosa si tratta…

Stiamo parlando della fusione nucleare, ossia…..(se vuoi continuare ad approfondire, clicca sull’immagine qui sotto per leggere il resto dell’articolo)


Clicca sull’icona qui sotto per accedere al blog:

Ott 292021
 

Alla fine di questa settimana, nella notte tra sabato 30 e domenica 31 ottobre, dovremo nuovamente spostare gli orologi indietro di 60 minuti per ritornare all’ora solare, e in quel momento si riaccenderà la discussione in merito a: ora legale sì o ora legale no? Ma sappiamo esattamente di che cosa si tratta e per quale motivo è stata introdotta?

Il primo ad ipotizzare l’idea di spostare le lancette per risparmiare sui consumi fu, nel 1784, Benjamin Franklin si proprio lui l’inventore del parafulmine, il quale propose sul quotidiano francese Journal de Paris le sue riflessioni con l’idea di questa soluzione per risparmiare sulla spesa in candele spingendo così i parigini ad alzarsi un’ora prima.

In Italia l’ora legale fu introdotta per la prima volta nel 1966 e da allora, questa pratica è stata utilizzata da sempre più paesi, sia europei che extra europei, consentendo un risparmio di alcuni miliardi di kilowattora.

Molti, oggi, propongono di mantenere l’ora legale per sempre perché vantaggiosa dal punto di vista energetico, ma questo è da valutare caso per caso ed in base alle differenze geografiche di ogni singolo Stato. Infatti, gli Stati del Nord Europa, come Norvegia e Svezia, hanno giorni molto lunghi in estate con il sole che sorge prima delle quattro del mattino e tramonta verso le 23, per cui l’ora legale non ha alcuna utilità. Al contrario, per gli Stati del sud Europa, questo cambio porterebbe a notevoli benefici, con risparmi energetici e maggiori ore di luce.

Da qualche tempo in Europa è in corso una consultazione tra gli stati membri per valutare l’abolizione o meno dell’ora legale. Ma la Comunità Europea non ha ancora preso una decisione definitiva valida per tutto il territorio dell’Unione, lasciando ai singoli Stati la possibilità di decidere, dal 2022, di adottare o meno l’ora solare o l’ora legale per tutto l’anno. Questo, a dire di molti, provocherà un caos ma già adesso, sono molte le differenze tra i paesi della stessa Europa o dei singoli Stati negli USA.

La proposta di abolizione dell’ora solare per il passaggio definitivo all’ora legale è datata 2018, dall’allora presidente della commissione europea Jean-Claude Juncker, il quale attraverso un sondaggio, a cui risposero 46 milioni di persone con l’84% di favorevoli all’abolizione dei cambi semestrali di orario, pose le basi per uno studio che valutava i danni alla salute oltre i vantaggi, indubbi, dal punto di vista economico. L’effetto immediato, comunque è quello che dormiremo un’ora in più e che la sera farà buio prima. Dovremo aspettare l’ultima settimana di marzo 2022 per il prossimo cambio, a meno che venga presa una decisione definitiva dall’Unione.

Proprio questa non uniformità nell’adozione del cambio di ora è stato, nel passato, fonte di confusione e problemi oltre che di situazioni bizzarre e imbarazzanti. Uno degli eventi più divertenti è quello che narra della visita ufficiale del presidente jugoslavo Tito negli Stati Uniti nel 1963, il quale atterrando in Virginia non trovò nessuno ad accoglierlo perché la città non aveva aderito al cambio d’ora mentre il resto dello Stato sì.

Restiamo tutti in attesa e chissà che questo non sia davvero l’ultimo cambio.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Apr 242021
 
SOLARE TERMICO
Indice Argomenti
1 I PANNELLI SOLARI
2 I TIPI DI IMPIANTI A PANNELLI SOLARI
3 MAPPA CONCETTUALE DELL’ARGOMENTO (non disponibile)
4 APPROFONDISCI CON I VIDEO
Lezioni Precedenti sull’Energia Solare
#1 ENERGIA SOLARE
#2 FOTOVOLTAICO

 

I PANNELLI SOLARI

Schema di Impianto a Pannelli Solari

I pannelli solari, funzionano essenzialmente per la produzione di calore a bassa temperatura e sfruttano il principio dell’effetto serra. Una piastra captante metallica, raccoglie l’Energia Solare e inizia ad emettere calore (Energia Termica).

Quale forma di ENERGIA sfruttiamo in un impianto a Pannelli Solari?

 TORNA ALL’INDICE

I TIPI DI IMPIANTI A PANNELLI SOLARI

Gli impianti solari termici utilizzati sono di due tipi:

  • a circolazione naturale;
  • a circolazione forzata.

Gli impianti a circolazione naturale sono sistemi monoblocco a circuito chiuso, che funzionano senza necessità di pompe né di componenti elettrici. Sono costituiti da un collettore solare esposto alle radiazioni solari, all’interno del quale l’acqua si scalda e sale per convezione (effetto termosifone) verso il serbatoio, confluendo quindi nel circuito domestico.

Gli impianti a circolazione forzata hanno il serbatoio montato separatamente (nel sottotetto o nel locale caldaia) e il liquido del circuito primario è spinto da una pompa. La pompa di circolazione viene messa in moto da una centralina elettronica che confronta le temperature dei collettori e dell’acqua nel serbatoio di accumulo rilevata da apposite sonde.

Impianto a Circolazione Naturale Impianto a Circolazione Forzata

I componenti principali di un sistema a Pannelli Solari termici sono:

  1. pannello solare;
  2. serbatoio di accumulo dell’acqua calda;
  3. pompa (solo nei sistemi a circolazione forzata);
  4. centralina elettronica;
  5. collegamenti idraulici ed elettrici.

PANNELLO SOLARE – possono essere raggruppati in 2 tipi principali: con tubi sottovuoto, oppure vetrati. Esistono, comunque, molte varianti come ad esempio pannelli ad aria, pannelli scoperti, a cupola.

  • Pannelli solari sottovuoto – si presentano come tubi di vetro, al cui interno viene tolta tutta l’aria possibile creando il vuoto, in modo che venga impedita la cessione del calore (effetto Thermos). All’interno viene posto un elemento assorbitore di calore, per lo più un tubo di rame, e vengono  denominati “tubi heat-pipe“. In alcune versioni a circolazione naturale all’interno del tubo può circolare direttamente l’acqua da riscaldare. Questo tipo di pannelli ha un ottimo rendimento in tutti i mesi dell’anno e sono adatti ad essere installati anche in condizioni climatiche molto rigide: quindi indicati nel nord Italia, così come al sud.
Schema Pannello Heat-Pipe Pannello Heat-Pipe
  • Pannelli solari vetrati – sono storicamente i primi apparsi sul mercato. Sono composti da un vetro trasparente alla luce del sole, ma opaco ai raggi infrarossi, che sono così trattenuti all’interno. I raggi del sole, che raggiungono la parte interna del pannello, lo scaldano e il calore viene trattenuto all’interno (effetto serra). La superficie di questi pannelli può essere, o meno, trattata con prodotti che ne migliorano il rendimento (ossia la capacità di “trattenere” i raggi). Può, inoltre, essere presente un serbatoio di accumulo integrato, oppure un accumulo separato, più indicato per le località particolarmente rigide.
Schema Pannello Solare a Vetro Pannello Solare a Vetro

Serbatoio, pompa, centralina elettronica e collegamenti idraulici e elettrici sono gli elementi che completano un impianto solare termico a bassa temperatura.

 TORNA ALL’INDICE

MAPPA CONCETTUALE DELL’ARGOMENTO


 TORNA ALL’INDICE

APPROFONDISCI CON I VIDEO
PANNELLO SOLARE COME FUNZIONA?
Durata: 1:21 Durata: 1:23
SCOPRI GLI ALTRI VIDEO SU ENERGIA SOLARE

 TORNA ALL’INDICE

Gen 172021
 

La tecnologia fotovoltaica, ossia quella utilizzata nei pannelli che disponiamo sui tetti delle nostre case, capaci di raccogliere la luce del sole trasformarla in elettricità è soltanto all’inizio e assistiamo continuamente nuove scoperte che ne migliorano le caratteristiche, la qualità e la durata. Uno dei problemi maggiori dei pannelli fotovoltaici e che nella conversione della luce in energia elettrica essi riescono, nelle condizioni migliori, a convertire al massimo i due terzi dei fotoni che li colpiscono.

Partiamo dal ricordare velocemente come funziona la tecnologia fotovoltaica; si tratta di quel fenomeno fisico per cui un materiale semiconduttore trattato con differenti prodotti sulle sue due superfici, diventa un diodo, ossia un componente elettrico in grado di far fluire la corrente solo in una direzione creando così la possibilità di assemblare diverse celle in sequenza per formare una stringa e poi pannelli sempre più grandi, sommando in questo modo le cariche prodotte come fanno le pile in sequenza. Purtroppo questi pannelli sono in grado di convertire soltanto alcuni fotoni, quelli ad alta energia, mentre altri, invece, vengono completamente dispersi o non catturati perdendo una grande quantità di energia che potrebbe essere sfruttata.

Lo studio condotto dalla Dipartimento di Scienza dei Materiali dell’Università di Milano Bicocca, ha permesso di realizzare nuovi materiali capaci di modificare le proprietà elettroniche di questi pannelli e di ottimizzare il recupero di parte dello spettro solare non utilizzato dai dispositivi fotovoltaici. In pratica, il sole emette radiazioni di diverso colore e quindi con diversa energia che, potrebbero tutti essere raccolti per produrre elettricità e attivare reazioni chimiche, ma sfortunatamente, le tecnologie fotovoltaiche attuali non riescono a realizzare.

I ricercatori dell’Università milanese, hanno progettato un sistema multicomponente in grado di catturare i fotoni sprecati, quelli a bassa energia, e di convertirli in fotoni ad alta energia così da poter sfruttare la parte di spettro luminoso che sfugge agli attuali sistemi. Si tratta di nanocristalli a semiconduttore capaci di assorbire la luce, modificati introducendo al loro interno delle impurezze d’oro il cui scopo è quello di funzionare da ponte energetico tra il nano-cristallo e i convertitori, sfruttando dei meccanismi ultra veloci che avvengono in milionesimi di milionesimi di secondo (picosecondo).

È ovvio che questa ricerca, pubblicata sulla rivista Advanced Materials, ed intitolata High Photon Upconversion Efficiency with Hybrid Triplet Sensitizers by Ultrafast Hole-Routing in Electronic-Doped Nanocrystals, potrà portare nell’immediato futuro allo sviluppo di nuovi nano-materiali ibridi in grado di portare enormi miglioramenti anche in altri campi della fotonica e della fotochimica.

PUOI LEGGERE ANCHE:
Apr 042019
 

Che gli eliostati potessero servire anche per illuminare gli spazi chiusi, è l’originalissima e vincente idea venuta agli ideatori di Solenica, una start Up tutta italiana che ha realizzato il progetto Lucy.

L’idea è semplicissima, quella di una di uno specchio smart capace di riflettere la luce del sole all’interno degli appartamenti in modo tale da procurare una sufficiente illuminazione a svolgere qualunque tipo di lavoro durante tutte le ore del giorno. Questo comporterà un enorme risparmio sulla bolletta elettrica perché non sarà più necessario accendere le luci.

L’idea è stata proposta dal gruppo sulla piattaforma di crowfunding Indiegogo e speravano di raccogliere 50.000 dollari in 30 giorni. Ma sorprendentemente, in poche ore il risultato è stato superato e in due giorni sono stati raccolti 140.000 dollari. L’idea è nata dalla creatività e ingegno di Mattia Di Stasi 24 anni e Diva Tommei 32 enne ex dottoranda in bioinformatica a Cambridge.

Lucy è uno specchio dal design molto curato, italiano, capace e attraverso l’uso di una speciale elettromeccanica alimentata anch’essa a energia solare di muoversi seguendo la direzione del Sole e riflettendo la luce all’interno degli ambienti in maniera tale da consentire una intensa illuminazione. Basta semplicemente posizionare Lucy all’esterno, in un posto molto soleggiato.

Lucy dispone di uno specchio che ruota ricostruendo la posizione del Sole nel cielo e inseguendolo in ogni momento durante tutte le ore del giorno, riuscendo così a mantenere lo stesso punto sempre illuminato con una intensità pari a cinque lampadine alogene da 100 W ciascuna, quindi, abbondantemente sufficiente per qualunque spazio abitativo.

I giovani fondatori della startup affermano di voler mantenere il progetto all’interno del made in Italy e di non volersi fermarsi a questo prodotto ma di aver già pensato a diverse versioni di Lucy destinate ad interi edifici o addirittura a luoghi all’aperto.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Giu 282016
 

Una delle maggiori preoccupazioni quando si realizza un edificio soprattutto in zone a clima caldo è il suo rinfrescamento durante le ore diurne e estive. Il costo del sistema di condizionamento, può diventare uno dei maggiori per la gestione dell’edificio e va tenuto in considerazione già in fase di progettazione. Nuove soluzioni vengono escogitate dai progettisti, al fine di ridurre l’impatto sui costi, ad ogni nuovo progetto.

Ma forse la soluzione definitiva viene ancora una volta dai ricercatori del MIT, i quali hanno sperimentato un nuovo materiale capace di cedere calore e di rinfrescando l’ambiente cui è esposto.

x-default

Normalmente, un materiale convenzionale trovandosi in un ambiente a temperatura più bassa, si raffredda cedendo parte del suo calore. In pratica si tratta di un pannello, molto simile a quelli fotovoltaici, ma la cui combinazione è molto diversa. Un wafer di silicio dello spessore di 10 centimetri nei quali si alternano strati di vetro a strati di afnio. Tali pannelli, sono in grado di disperdere nello spazio circostante circa il 97% dell’energia solare (quindi anche termica) che li colpisce.

Il principio è quello che il nostro pianeta utilizza per la dispersione del calore in eccesso, chiamato finestra termica spaziale. La nostra atmosfera, riesce a dissipare parte del calore terrestre nello spazio, quando questo è emesso a particolari frequenze. Il materiale del MIT funziona allo stesso modo e sfrutta le stesse frequenze delle onde termiche che utilizza il nostro pianeta. Con questo principio, il pannello diventa più freddo dello spazio circostante disperdendo una grande quantità di calore.

Vetrotermico01

Shanhui Fan, il ricercatore del MIT che ha già realizzato un modello funzionante della finestra termica, ha dimostrato che questo sistema è perfettamente efficiente anche durante il giorno, nel momento in cui è pienamente colpito dai raggi solari. In pratica, Shanhui Fan avrebbe realizzato un campione della dimensione di un piatto e vorrebbe realizzare un pannello di circa un metro quadro per dimostrare la sua assoluta efficienza. Shanhui è convinto, se riuscirà a convincere gli sponsor e trovare i finanziamenti, di poter dimostrare che ricoprendo un tetto con pannelli di questo materiale super riflettente, sarà possibile eliminare del tutto il fabbisogno di aria condizionata, con un risparmio in termini energetici e di inquinamento incredibili.

Si tratterebbe di un grande risultato ed anche i costi di produzione potrebbero essere contenuti utilizzando le tecniche già oggi utilizzate per la realizzazione delle finestre a taglio termica.

PUOI LEGERE ANCHE:
SCARICA L’ARTICOLO:
Mar 282013
 

piante-sole3Ogni giorno nel campo delle fonti energetiche alternative, qualche ricercatore compie un passo in avanti per migliorare e rendere più efficienti i metodi per produrre energia e riuscire a produrla a costi più contenuti e soprattutto in modo eco-sostenibile.

Arriva questa volta dai ricercatori del Georgia Institute of Technology e della Purdue University che,  congiuntamente, hanno brevettato un metodo per costruire cellule solari partendo da substrati di nanocristalli di cellulosa (CNC) ricavati dagli alberi o altre piante. Un ulteriore vantaggio deriva dal fatto che queste cellule organiche sono assolutamente biodegradabili e quindi riciclabili rispetto alle celle di plastica o altri derivati del petrolio.

Il principio di funzionamento è come quello che accade normalmente nelle piante. Lo strato di origine vegetale, come una foglia, filtra la luce facendola assorbire dallo strato sottostante. Nel caso della cella solare il substrato è un semiconduttore organico.

Questa nuova tecnologia consente al momento un’efficienza di conversione della luce solare di appena il 2,7%, contro il 10-20% delle celle attualmente in uso, ma i ricercatori sono fiduciosi poiché questa è la resa più alta mai ottenuta con materiali rinnovabili di origine naturale. L’obiettivo è raggiungere o superare un’efficienza pari a quella degli altri materiali non naturali.

Articoli1

Feb 152012
 
FOTOVOLTAICO
Indice Argomenti
1 FOTOVOLTAICO
2 L’IMPIANTO FOTOVOLTAICO
3 GLI ELEMENTI DI UN IMPIANTO FOTOVOLTAICO
4 FOTOVOLTAICO AD ACCUMULO (coming soon)
Mappa MAPPA CONCETTUALE DELL’ARGOMENTO
Video APPROFONDISCI CON I VIDEO
Lezioni precedenti sull’Energia Solare
#1 SOLARE A CONCENTRAZIONE
Prossime Lezioni sull’Energia Solare
#3 SOLARE TERMICO

L’energia che sprigiona il Sole può essere utilizzata anche attraverso metodi diversi dalle centrali a concentrazione e per finalità diverse dalla produzione di energia elettrica. Diversi sistemi sono in studio e alcuni ormai sono giunti a maturazione e trovano impiego nelle nostre case e città. Tra queste tecnologie, possiamo citare i pannelli solari per la produzione di calore a bassa temperatura e gli impianti fotovoltaici che trasformano direttamente l’Energia Radiante del Sole in energia elettrica.

FOTOVOLTAICO

Il sistema fotovoltaico è un insieme di componenti meccanici, elettrici ed elettronici che permettono di captare l’Energia Solare e di trasformarla in Energia Elettrica. Questo avviene sfruttando un fenomeno fisico, noto come effetto fotovoltaico, cioè la capacità di alcuni materiali semiconduttori (normalmente silicio) di generare elettricità quando esposti alla Radiazione Luminosa.

Quale forma di ENERGIA sfruttiamo in un impianto fotovoltaico?

Quando i fotoni (unità elementare, priva di carica elettrica e di massa, che si propaga esattamente alla velocità della luce) colpiscono una cella fotovoltaica, una parte di energia è assorbita dal materiale (silicio drogato) e alcuni elettroni, scalzati dalla loro posizione, scorrono attraverso il materiale producendo una corrente continua che può essere raccolta sulle superfici della cella.

 TORNA ALL’INDICE

L’IMPIANTO FOTOVOLTAICO

Gli impianti fotovoltaici possono essere suddivisi in due categorie: quelli connessi alla rete elettrica (grid-connected) e quelli isolati (stand-alone). Nei primi, la corrente generata viene inviata ad un convertitore (inverter) dal quale esce sotto forma di corrente alternata, tale da poter essere poi trasformata in corrente a media tensione dal trasformatore, prima di essere immessa nella linea di distribuzione. I secondi invece sono in genere dotati di accumulo e possono essere senza o con inverter. Il sistema di immagazzinamento è necessario per garantire la continuità dell’erogazione anche nei momenti in cui non viene prodotta. Questo avviene mediante accumulatori elettrochimici (batterie).

Schema di Impianto Fotovoltaico

Nel sistema grid-connected non è previsto un sistema di accumulo in quanto l’energia prodotta durante le ore di insolazione viene immessa nella rete elettrica; viceversa, durante le ore di insolazione scarsa o nulla il carico viene alimentato dalla rete.

Il fotovoltaico può essere usato anche per realizzare delle centrali per la produzione di energia elettrica. In questo caso, bisognerà collegare in serie o in parallelo, più celle fotovoltaiche tra di loro.

Campo fotovoltaico

Sapendo che ogni cella produce circa 1,5W di potenza elettrica, basterà conoscere il consumo dell’area da servire per stabilire quante celle dovranno essere collegate tra loro per fornire l’energia necessaria. Per stabilire queste connessioni e renderle fattibili, le celle vengono combinate tra di loro in strutture regolari sempre più grandi che prendono i seguenti nomi (vedi schema sopra):

  • modulo;
  • pannello;
  • stringa;
  • campo.

MODULO – i più comuni sono costituiti da 36 o 72 celle. Queste sono assemblate fra uno strato superiore di vetro e uno strato inferiore di materiale plastico (il tedlar) e racchiuse da una cornice di alluminio. Nella parte posteriore del modulo è collocata una scatola di giunzione in cui vengono alloggiati i diodi e i contatti elettrici. Il modulo fotovoltaico ha una dimensione di circa mezzo metro quadro e le taglie normalmente in commercio vanno da 100 a 300 Watt di potenza.

Struttura di un pannello fotovoltaico

PANNELLO – è un insieme di più moduli collegati in serie o in parallelo su una struttura rigida.

STRINGA – per fornire la tensione richiesta, più moduli o più pannelli, possono essere collegati elettricamente in serie costituendo una stringa.

CAMPO – è un collegamento elettrico di più stringhe. Nella fase di progettazione devono essere effettuate alcune scelte determinanti. Innanzitutto bisogna scegliere tra una configurazione in serie o una in parallelo dei moduli.

Collegamento in Serie Collegamento in Parallelo

La distanza minima fra le file di pannelli non può essere casuale ma deve essere fatta in modo da evitare che l’ombra della fila anteriore possa coprire quella immediatamente posteriore. È quindi necessario calcolare la distanza minima tra le file in funzione dell’altezza dei pannelli, della latitudine del luogo e dell’angolo di inclinazione dei pannelli.

Pannello fotovoltaico Stringa fotovoltaica Campo fotovoltaico

 TORNA ALL’INDICE

GLI ELEMENTI DI UN IMPIANTO FOTOVOLTAICO

Un impianto fotovoltaico è costituito dai seguenti elementi:

  1. celle fotovoltaiche;
  2. inverter;
  3. contatore energia prodotta (GSE);
  4. contatore energia scambiata (bidirezionale).

CELLA FOTOVOLTAICA – è un diodo (componente elettronico che consente il passaggio della corrente in una direzione e ne impedisce il passaggio in quella opposta) di grande superficie che, esposto ai raggi del sole, converte la Radiazione Solare in elettricità. La cella si comporta come una minuscola batteria e produce una corrente di 3 Ampere con una tensione di 0,5 Volt, quindi una potenza che sfiora 1,5 Watt.

Schema di funzionamento di una cella di silicio

Sono di colore blu scuro a causa dell’ossido di titanio presente nel rivestimento antiriflettente, fondamentale per massimizzare la captazione dell’irraggiamento solare. La loro forma è quasi sempre quadrata o circolare e le misure variano dai 10cm x 10cm ai 15cm x 15cm. Sono costituite principalmente da silicio,  arsenuro di gallio e telloluro di cadmio, tutti semimetalli. Il flusso di elettroni è orientato, ossia fluisce in una determinata direzione, all’interno della cella; su questa sono sovrapposti altri due strati di silicio (tipo n e tipo p), trattati ognuno con un particolare elemento chimico (operazione detta di drogaggio), fosforo e boro. Di tutta l’energia che investe la cella solare sotto forma di radiazione luminosa, solo una parte viene convertita in energia elettrica. L’efficienza di conversione delle celle commerciali al silicio è compresa tra il 10% e il 20%.

Cella fotovoltaica Celle ultrasottili

INVERTER –  i pannelli fotovoltaici generano corrente di tipo continuo. Il sistema di distribuzione dell’energia nazionale avviene, invece, in corrente alternata. Per questo motivo, viene installato un dispositivo elettronico chiamato inverter, capace di trasformare l’energia elettrica da continua ad alternata. A questo punto, per rendere la corrente prodotta da una centrale fotovoltaica idonea alle utenze da servire, bisogna installare una serie di dispositivi che prendono il nome di B.O.S. (Balance of System) che comprendono, oltre all’inverter, il trasformatore, i quadri elettrici e i sistemi ausiliari di centrale.

CONTATORE ENERGIA PRODOTTA (GSE) – serve a misurare l’energia prodotta giornalmente dall’impianto. Questo dispositivo è essenziale per capire quanto si sta guadagnando dalla produzione di energia del proprio impianto fotovoltaico. I  dati di questo contatore vengono periodicamente trasmessi al Gestore dei Servizi Elettrici (GSE) il quale li elabora e calcola l’incentivo totale sull’energia prodotta.

CONTATORE ENERGIA SCAMBIATA (bidirezionale) – questo strumento elettronico, serve nel momento in cui il nostro impianto fotovoltaico produce più energia di quanto l’utenza ne possa consumare. Allora serve un secondo contatore che consenta il passaggio di un flusso di energia elettrica dall’impianto fotovoltaico verso la rete pubblica (flusso uscente). Tale contatore garantisce, inoltre, il flusso di corrente in senso opposto (flusso entrante) nei momenti in cui l’impianto fotovoltaico non è in grado di sopperire alle esigenze dei carichi elettrici (ad esempio nelle ore notturne o in assenza di Sole).

 TORNA ALL’INDICE

MAPPA CONCETTUALE DELL’ARGOMENTO

 TORNA ALL’INDICE

APPROFONDISCI CON I VIDEO
PANNELLO FOTOVOLTAICO COME FUNZIONA?
Durata: 4:53 Durata: 5:06
SCOPRI GLI ALTRI VIDEO SUL FOTOVOLTAICO

 TORNA ALL’INDICE