Feb 142021
 

Chi non ama le finestre, quegli ampi spazi ritagliati sulle pareti dei nostri edifici capaci di collegati con il mondo esterno, che ci consentono di poter guardare fuori dalle mura del nostro spazio domestico, di far entrare la luce all’interno delle nostre case e soprattutto di proteggerci da rumori e agenti atmosferici conservando condizioni ideali all’interno dei nostri spazi. Purtroppo questo materiale non è esente da difetti; è, infatti, molto fragile rischiando di rompersi con facilità, inoltre non è un buon isolante tant’è che bisogna realizzare opportuni accorgimenti tecnici come ad esempio i vetri camera, ossia più vetri separati da uno spazio d’aria interno, per ottenere l’isolamento necessario. Forse fino ad oggi perché i ricercatori dell’Università del Maryland sono riusciti a trasformare degli sfogliati di tronco d’albero in un materiale trasparente quasi come il vetro, più leggero e con capacità migliori di isolamento termo-acustico. Che sia arrivato il momento di sostituire i vetri delle nostre finestre?

Il legno come sappiamo è composto essenzialmente da due materiali base, la cellulosa, si quella con cui si fa la carta, costituita da minuscole fibre intrecciate e la lignina, una struttura polimerica che ha la funzione di cementare e legare queste fibre in modo da conferire compattezza e resistenza al tronco della pianta. La lignina contiene delle molecole chiamate cromofori, che danno al legno la caratteristica colorazione marrone e impediscono il passaggio della luce.

Fino ad oggi si era provato a rendere il legno trasparente eliminando la lignina dalla sua struttura, però, questo procedimento richiedeva l’uso di sostanze pericolose, alte temperature e molto tempo, tali da non rendere economico il processo, ossia il materiale ottenuto seppur semitrasparente sarebbe stato costosissimo.

I ricercatori del Maryland invece hanno trovato una soluzione ingegnosa e molto semplice, realizzabile a costo bassissimo e da chiunque, capace di rendere in legno assolutamente trasparente. L’operazione, molto semplice, richiede di spennellare delle assi di legno spesse 1 millimetro con perossido di idrogeno al 30% (acqua ossigenata). Queste debbono poi essere lasciate al Sole per circa un’ora o sotto una lampada UV in maniera tale che il perossido riesca sbiancare i cromofori marroni lasciando intatta la lignina rendendolo così bianco. A questo punto gli scienziati hanno immerso per cinque ore queste assi di legno in etanolo e poi hanno usato il toluene, una sorta di idrocarburo solvente usato al posto del benzene, su cui hanno poi applicato una resina epossidica trasparente, resistente, capace di riempire i pori del legno e di indurirsi dopo qualche ora. Questo procedimento ha reso il legno assolutamente trasparente.

Il risultato è incredibile, perché il materiale che è stato ottenuto è in grado di far passare il 90% della luce visibile inoltre il legno è molto più resistente del vetro e più leggero ed ha delle proprietà isolanti, come già detto, migliori a quelle del vetro. Nella sua produzione non è necessario utilizzare alte temperature con un conseguente risparmio di energia per la sua produzione. Gli scienziati hanno riferito che si possono utilizzare tanti tipi di legno per produrre queste assi trasparenti inclusi la quercia e la balsa e che non ha assolutamente importanza la direzione del taglio, che può avvenire sia nella direzione delle venature che in senso diametralmente opposto.

Si tratta di una scoperta e di una innovazione dei grandi risvolti, e chi lo sa che presto le nostre finestre non saranno più di fragile vetro bensì di resistentissimo legno trasparente.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Set 162020
 

Sviluppato in Italia, a Faenza, frutto di un lavoro durato cinque anni e diretto dalla ricercatrice e scienziata Anna Tampieri, presso l’Istituto di Scienze e Tecnologia dei Materiali Ceramici del CNR, Green Bone Ortho, si propone di affrontare risolvere un grave problema che ha afflitto fino ad oggi il campo dell’ortopedia.

Infatti, a causa di eventi traumatici, quali tumori ossei, infezioni, complessi interventi di chirurgia o per l’applicazione di protesi articolari, i pazienti sono stati trattati utilizzando innesti di materiale biocompatibile nel tentativo di migliorare la biologia e la migrazione delle cellule verso l’area trattata così da colmare il divario, cioè riempire lo spazio lasciato vuoto dall’evento traumatico.

Green Bone Ortho è un prodotto innovativo derivato dalla pianta del rattan sviluppato dalla GreenBone, una startUp nata nel 2014 attiva nel campo della rigenerazione ossea che ha sviluppato soluzioni innovative ispirate alla natura e finalizzate a curare gravi malattie ossee. Green Bone Ortho, ha ricevuto il marchio CE europeo che certifica la qualità del sistema sia dal punto di vista della progettazione e produzione che, della conformità ai requisiti richiesti nella chirurgia ricostruttiva dei difetti ossei.

Si tratta di un dispositivo bio-mimetico, che riproduce la composizione chimica e la struttura 3D porosa dell’osso naturale. Questo materiale derivato come detto dal rattan, ha importanti caratteristiche di osteointegrazione, necessarie per una efficace guarigione anche di grandi segmenti ossei. Inoltre, il fatto di essere prodotto in laboratorio lo rende modellabile da parte dei chirurghi così da ottenere la forma necessaria al miglior risultato possibile.

A detta del suo amministratore delegato Lorenzo Pradella, il prossimo passo, dopo il successo della certificazione europea, sarà quello di produrre segmenti ossei derivati dal legno capaci di coadiuvare i medici nella chirurgia spinale.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Giu 142018
 

Plastica, è sicuramente il materiale di cui maggiormente si parla in questi giorni e purtroppo non positivamente. Telegiornali, radio, internet, ovunque la si menziona a causa dei suoi effetti altamente nocivi per l’ambiente.

Tante sono le strade e le ricerche sviluppate al fine di risolvere una volta per tutte i problemi generati dalla produzione di questo utilissimo materiale e l’ultima prende il nome di Sweetwoods, ossia la realizzazione di biomateriali a partire dal legno.

Questo progetto nasce dalla collaborazione di nove società europee finanziate con 21 milioni di euro dallo strumento finanziario Bio-Based Industries nel programma Horizon 2020 dell’Unione europea.

Il processo consiste nel trasformare il legno in zuccheri e lignina in modo da poter perfezionare ulteriormente il materiale in altri prodotti capaci di poter sostituire le sostanze chimiche e le materie plastiche derivate dal petrolio.

Il progetto è molto ambizioso e apre scenari del tutto nuovi nel panorama internazionale. Lo afferma Laura Koponen, il direttore generale della finlandese Spinverse, una delle nove società coinvolte. La Koponen, spiega, che l’obiettivo è quello di implementare una nuova tecnologia produttiva su scala industriale entro i prossimi 4 anni. Si è dimostrato che dal legno e dalla sua raffinazione, è possibile produrre tantissimi nuovi prodotti che prima potevano essere realizzati solo ed esclusivamente con il petrolio e i suoi derivati.

Tramite questo processo chiamato bioraffinamento, da 80 tonnellate di legno, sono stati realizzati prodotti ad alto valore aggiunto, quali bioplastiche, carburanti, edulcoranti, materiali per isolamento ed altro.

Dalla sinergia delle nove aziende europee, capeggiate dalla estone Graanul Biotech specializzata nella lavorazione del legno, sono stati sviluppati molteplici procedimenti atti alla realizzazione dei nuovi materiali. La finlandese MetGen ha ideato un procedimento che sfrutta gli enzimi per l’estrazione dal legno dei biomateriali puri e le ulteriori trasformazioni. La tedesca Tecnaro GmbH, la Armacell, la francese Global Bioenergies e la belga Recticel N.V., utilizzano poi questi biomateriali puri prodotti dalla MetGen, per produrre rispettivamente bio-materiali-compositi, schiume in elastomero, biocarburanti e schiume poliuretaniche.

Vedremo se i tempi di realizzazione di questo nuovo processo produttivo rispetteranno quelli previsti dal finanziamento europeo.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Mar 042017
 

Il legno é sempre stato un grande materiale da costruzione utilizzato nell’antichità, ma oggi, grazie alle nuove tecnologie e nuove soluzioni costruttive sta vivendo una seconda giovinezza. Pare che l’obiettivo che siano prefissati ingegneri e architetti è quello di raggiungere altezze sempre maggiori e soluzioni ingegneristiche sempre più avanzate.

GrattacieliLegno03

Nessuno avrebbe mai pensato all’utilizzo del legno come elemento strutturale per raggiungere grandi altezze, ma pare sia proprio questa la nuova direzione intrapresa nel campo edile. La grande resistenza, le straordinarie proprietà unite a nuove tecnologie di assemblaggio e costruttive hanno fatto sì che il legno potesse diventare il materiale idoneo anche per costruzioni di questo genere. Nuovi progetti e nuove realizzazioni puntano tutte in questa direzione, edifici sempre più alti e soluzioni tecniche capaci di assicurare una lunga durabilità e una grande resistenza ad agenti atmosferici, sismi e soprattutto fuoco.

Alcuni esempi dimostrano la bontà di questo materiale nel suo uso in campo edile, come ad esempio il Tempio della Legge Fiorente realizzato in Giappone alcuni secoli fa nella prefettura di Nara che, altro non è che una gigantesca pagoda di 32 m su 5 piani che ha resistito ai secoli superando l’azione degli agenti atmosferici, dei terremoti e anche degli incendi.

GrattacieliLegno01

Pagoda del Tempio della Legge Fiorente in Giappone

Oggi l’edificio in legno più alto del mondo si trova in Norvegia nella città di Bergen; si tratta di una realizzazione di 14 piani, ma ben presto questo primato sarà superato quando la  University of British Columbia inaugurerà in Canada un residence per studenti di ben 18 piani.

GrattacieliLegno04

Tratoppen a Stoccolma

Un’altra sperimentazione di costruzione verticale in legno verrà realizzata ad Amsterdam. Si tratterà di un edificio alto ben 21 piani totalmente realizzato con struttura in legno da pini provenienti dall’Europa cresciuti in coltivazioni finalizzate a questo scopo quindi assolutamente sostenibili.

Ma il progetto più avveniristico e sicuramente quello più interessante è il progetto di un grattacielo da realizzare a Stoccolma che prenderà il nome di Tratoppen.

La realizzazione di questi giganteschi edifici pone ovviamente una serie di domande e di interrogativi. Ci si chiede quanto possa essere sicuro un edificio del genere. Ovviamente un edificio totalmente in legno rappresenta una sfida affascinante data anche la bellezza e le caratteristiche del materiale di cui stiamo parlando; il legno ha un impatto ambientale enormemente inferiore rispetto ai materiali edilizi utilizzati fino ad oggi, fino al 75% in meno, e risulta essere molto meno costoso perché più semplice da assemblare, consente di realizzare strutture molto meno pesanti, fino a un quarto, gli edifici realizzati con questa tecnica necessitano di fondamenta molto meno profonde e quindi più economiche.

La tecnica oggi utilizzata per la realizzazione di questo genere di costruzioni prende il nome di CLT (Cross Laminated Timber) Incroci di Legno Lamellare, una tecnologia che consente di assemblare differenti tipi di legno disposti perpendicolarmente tra di loro, capaci di enormi resistenze meccaniche ma anche di poter miscelare insieme differenti tipi di essenze o materiali compositi.

GrattacieliLegno06

Tratoppen a Stoccolma

Il CLT viene assemblato in pannelli da tre assi in su, possiede certificazione PEFC (Program for the Endorsement of Forest Certification Schemes) ossia il programma che certifica che il legno proviene da foreste coltivate per sostenere il processo produttivo, possiede certificazione antisismica, ottimo potere di insonorizzazione, altissima ecosostenibilità, resistenza al fuoco e alta inerzia termica.

Inoltre, il CLT se realizzato con criterio ha una durabilità eterna.

In pratica un materiale quasi perfetto a dispetto dei dubbi e dei pregiudizi sul suo uso nelle costruzioni.

Anche in Italia si sta iniziando a sperimentare l’uso del legno nelle costruzioni come ad esempio a Milano dove è in corso di realizzazione di un complesso residenziale di ben quattro torri da nove piani costruite con pannelli portanti in XLAM.

GrattacieliLegno08

Complesso residenziale di Via Cenni, Milano

Complesso residenziale di Via Cenni, Milano - Fasi costruttive

Complesso residenziale di Via Cenni, Milano – Fasi costruttive

Anche Catania ha le sue eccellenze nell’uso di questa tecnologia come è possibile vedere nel video sotto, finalizzato al recupero edilizio di un edificio nel centro storico cittadino.

GUARDA I VIDEO:
PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Set 222016
 

Alle menti visionarie di architetti lungimiranti, quali Frei Otto e Mutsuro Sasaki, dobbiamo la creazione di strutture incredibili, sia per proprietà che per qualità. Queste strutture chiamate Grid-Shell dall’unione delle due parole Grid (griglia) e Shell (guscio) sono un trionfo dell’ingegneria edile e un incredibile ritrovato ecosostenibile dovuto all’impiego di un materiale 100% naturale quale il legno.

GridShell07

In pratica, le grid-shell, non sono altro che elementi in legno che vengono utilizzati per le grandi proprietà elastiche di questo materiale. L’insieme dei pezzi viene assemblato in piano, poi secondo una precisa idea progettuale, già definita in fase di prototipazione, vengono curvati fino ad assumere la forma definitiva per poi fissarla definitivamente con altri elementi quali cavi in acciaio o altri assi in legno al fine di conferire all’insieme rigidezza strutturale e forma finale. I risultati sono strepitosi come nell’opera oramai ritenuta monumento storico e culturale dal 1998, la Multihalle di Mannheim del 1975 dell’architetto Frei Otto.

GridShell01

Multihalle di Mannheim di Otto Frei, 1975

Le grid-shell, presentano diversi vantaggi come ad esempio quello di essere realizzate con materiali eco-compatibili, riciclabili e leggeri. Inoltre, combinano le morbide curve della strutture a conchiglia con la rigida geometria dei reticoli strutturali.

L’opera di Otto Frei, non aveva precedenti nell’architettura contemporanea; apriva nuove strade e nuovi orizzonti nella progettazione. Resistenza, ordine, spaziosità, rigidezza le parole associabili a questo tipo di realizzazione. Ma anche durabilità; la semplicità costruttiva e i materiali impiegati non richiedono grandi opere di manutenzione, le parti sono sostituibili con facilità perché non incastrate ne incollate. Oggi ancora dopo quaranta anni l’opera è li a testimoniare questa bontà costruttiva.

GridShell02

Savill gridshell di Buro Happold e Glen Howells Architects a Windsor, anno 2006

L’opera strutturale di Otto Frei, ha aperto la strada a sperimentazioni diverse, con la realizzazione di griglie sempre più complesse e articolate e con la sperimentazione di altri materiali di maggiore resistenza come gli acciai.

Heasley Nine Bridges Golf Club House di Shigeru Ban a Seoul, anno 2010

Anche l’assemblaggio e la costruzione sono facili e poco costosi; infatti, i pezzi in origine sono semplici, facili da produrre, hanno dimensioni ridotte.

Le grid-shell, dall’esempio costruttivo di Frei Otto, hanno acquisito un loro ben precisa identità nel campo dell’ingegneria edile; sono strutture che risultano resistenti per forma, ossia la loro forma legata alla rigidità complessiva e all’ancoraggio in determinati punti fa si che si possano realizzare luci molto ampie e design spaziali molto fluidi e di grande impatto visivo.

Le tecniche necessarie per la realizzazione delle grid-shell in legno necessitano essenzialmente di 2 passaggi fondamentali:

il primo passaggio, richiede l’assemblaggio delle bacchette dritte per formare una griglia piana più o meno complessa, disegnando la forma richiesta su di una superficie, quindi un graticcio di forma ortogonale;

il secondo passaggio, richiede la deformazione per flessione degli elementi del graticcio orizzontale. Viene sfruttata l’estrema elasticità del legno, che consente alla maglia di piegarsi e conformarsi nella forma tridimensionale richiesta. Il legno, flettendosi, modifica la geometria delle maglie che passano da rettangolari a romboidali.

Piegati questi elementi, si passa al loro fissaggio al terreno e all’irrigidimento legandoli tra di loro con assi diagonali, cavi di acciaio o altri elementi necessari a conferire all’insieme la rigidità strutturale richiesta. La forma, come si può ben comprendere, è dettata dalla deformazione del materiale, e non può in fase progettuale essere definita dettagliatamente. Ecco perché una corretta e attenta progettazione può portare ad un risultato il più possibile vicino all’idea del progettista.

Padiglione del Giappone per l'expo di Hannover di Shigeru Ban, 2000

Padiglione del Giappone per l’expo di Hannover di Shigeru Ban, 2000

Le grid-shell, quindi, nella loro complessità e formale bellezza sono frutto di un’idea semplice, economica, eco-sostenibile. Nascono in un’era di passaggio tra un processo manuale-manifatturiero ad uno di tipo seriale-industriale. Questo tipo di elemento si colloca perfettamente tra questi due mondi frutto di ere e di tecnologie diverse.

La produzione degli elementi richiede macchinari piccoli, poco ingombranti e economici, una fase iniziale tipica di un processo industriale, ma le fasi successive che non prevedono giunzioni ne l’uso di collanti, ma solo bullonature, un carattere tipico della produzione artigianale.

Smontaggio e sostituzione dei pezzi sono semplicissimi, rendendo economica anche la parte manutentiva dell’impianto oltre che totalmente riciclabile.

Weald & Downland Museum di Edward Cullinan, Sussex, 2002

L’architetto Edward Cullinan vince, proprio per questo, il primo premio “Wood Awards” nel 2003 con la sua grid-shell realizzata per il Weald & Downland Museum del 2002 nel Sussex.

GridShell08

Woodhome a Fratte Rosa, Gridshell.it, 2013

Le grid-shell con le loro forme, la tecnologia costruttiva artigianale e industriale, lo schema rigido del graticcio e quello morbido e irregolare del guscio, l’aspetto a metà tra tradizionale per l’impiego di materiali antichi e moderno per le sinuose curve, trovano il loro naturale habitat nel contesto urbano dialogando perfettamente con lo spazio antropizzato e quello naturalistico.

La loro leggerezza e la loro immagine si legano perfettamente a contesti diversi, sia rurali che urbani, creando dialogo tra gli elementi, legandoli in forme e composizioni mai uguali. Complessi software di progettazione parametrica, basasti su algoritmi generativi, consentono di immaginare queste strutture in fase di progettazione e di stabilire con relativa precisione forme e rinforzi per una resa strutturale perfetta. Ciò che viene fuori è una complessa intelaiatura capace di generare forme che rispecchiano la complessità della società contemporanea.

La tecnica prende spunto da antichi mestieri, da forme sviluppate negli antichi filatoi dove trama e ordito in differenti combinazioni realizzavano preziosissimi tessuti, o dalle tecniche ancestrali di tribù australiane che sapientemente intrecciavano il flessuoso e resistentissimo bamboo.

Un sistema strutturale perfetto, che consente di scaricare tutti i pesi, in verticale, sui sostegni laterali e le spinte ortogonali del vento o della neve vengono trasmessi e riassorbiti dal sistema di cavi che corre diagonale rispetto alla griglia.

In Italia solo un gruppo di ricerca guidato dall’arch. Sergio Pone dell’Università degli Studi Federico II di Napoli si sta occupando di questo tipo di struttura sin dal 2006.

GridShell09

Grid-shell in accoya d’Australia

Lo stesso arch. Pone, in collaborazione con gli arch. Sofia Colabella e Alberto Pugnale, docente presso la Melbourne School of Design, hanno progettato nel 2014 la prima grid-shell post-formata in accoya d’Australia (un tipo di legno molto durabile e con grande stabilità dimensionale) capace di resiste alle condizioni più estreme, ad elevate prestazioni meccaniche e atossico.

GUARDA I VIDEO:

PUOI LEGGERE ANCHE:
Apr 212016
 

Il legno come materiale da costruzione lo conosciamo tutti. E conosciamo tutti le sue intrinseche proprietà e qualità. Negli anni la tecnologia nell’uso di questo materiale si è evoluta facendogli raggiungere traguardi una volta impensabili, basti pensare al legno lamellare resistente come un acciaio ma pur sempre realizzato con lo stesso materiale.

Ma fino ad oggi nessuno si era spinto fino questo livello, creando un nuovo tipo di legno capace di oltrepassare pure i suoi naturali limiti fisici.

I ricercatori dell’università della KTH Royal Institute of Technology di Stoccolma, sono riusciti ad alterare le sue caratteristiche fisiche fino a farlo diventare trasparente, o meglio traslucido.

001-039_Ceccarelli ed V.indd

Per ottenere questo miracolo, i ricercatori dell’Università svedese, hanno elaborato un processo alquanto sofisticato. Hanno per primo tolto la lignina dal legno, la fibra naturale che lo costituisce e che ne determina anche la colorazione. Per cui il legno così trattato è diventato bianco. A questo punto è stato aggiunto un polimero, il metil metacrilato prepolimerizzato (PMMA) capace di cambiare l’indice di rifrazione della luce del legno mantenendone la struttura. In questo modo, alterando la densità della cellulosa, è possibile alterare le sue proprietà ottiche modificandone di conseguenza anche il grado di trasparenza.

Le possibili applicazioni sono diverse: una prima sperimentazione è stata effettuata provando a sostituire il vetro delle finestre con questo nuovo materiale traslucido. Il legno risulta essere molto più leggero del vetro e allo stesso tempo molto più resistente; abbassa anche il costo di produzione e potendo variare il grado di densità è possibile ottenere finestre più o meno trasparenti, quindi in grado di far passare la luce e di garantire la privacy agli occupanti.

Legno01

Ma la vera rivoluzione verrebbe dalle celle solari trasparenti. Il tessuto del legno, infatti, provoca una maggiore dispersione della luce a causa della propria struttura interna per cui, la luce, verrebbe trattenuta sul materiale per un tempo assai più lungo di quello che accade sul normale vetro. Applicando piastrine solari trasparenti su questa superficie, l’interazione tra la piastrina e la luce, renderebbe molto più efficenti queste celle solari. Inoltre, il loro costo sarebbe notevolmente inferiore rendendo queste ultime molto più competitive a livello economico ed in grado di confrontarsi con sistemi tradizionali per la produzione di energia. Una massiccia applicazione di questo sistema in architettura consentirebbe notevoli risparmi in ambito energetico e notevoli passi avanti sull’impatto ambientale e il riciclaggio dei materiali.

Il team di studiosi, sta verificando diverse opzioni, testando differenti essenze lignee e prendendo in considerazione soprattutto materiali provenienti da fonti rinnovabili e dal riciclo, in modo da mantenere bassi i costi di produzione.

PUOI LEGGERE ANCHE:
SCARICA L’ARTICOLO:
Ott 192015
 
IL LEGNO#1 (L’ALBERO)
Indice Argomenti
1 GLI ALBERI
2 IL NUTRIMENTO (la linfa)
3 MAPPA CONCETTUALE DELL’ARGOMENTO
4 APPROFONDISCI CON I VIDEO
Prossime Lezioni sul Legno
#2 IL LEGNO (IL CICLO DI LAVORAZIONE) argomento ancora non attivo
#3 IL LEGNO (L’INDUSTRIA DEL PANNELLO)

Il LEGNO è sicuramente uno dei materiali più antichi che l’uomo ha da sempre utilizzato per una grande varietà di impieghi. E’ servito per scaldarsi, per proteggersi, per realizzare utensili. Oggi con lo sviluppo industriale anche questo materiale ha assunto ruoli e utilizzi diversi, sempre più evoluti, basti pensare al legno lamellare.

Lamellare massiccioApprofondisco: il Legno Lamellare, è un materiale composito, fatto essenzialmente di assi di legno opportunamente righettate, incollate e pressate per costituire un nuovo materiale molto resistente che supera i difetti tipici del legno massello. Viene utilizzato in ambito strutturale in edilizia.

Questo prezioso materiale è ottenuto dai tronchi dei grandi alberi, ma oggi grazie alle nuove tecnologie anche da scarti e residui ottenendo prodotti di grande qualità e resistenza: i pannelli di legno.

Ma andiamo con ordine e scopriamo questi grandi organismi presenti ovunque sul nostro pianeta: gli alberi.

GLI ALBERI

L’albero è una pianta legnosa, sviluppata in altezza dal terreno tramite un tronco che inizia a ramificare a qualche metro dal suolo. In botanica lo si distingue dagli arbusti perché questi ultimi sono privi del tronco.

ALBERI01

In natura, le piante vengono classificate in due gruppi ben distinti in virtù delle loro differenti caratteristiche riproduttive: angiospermӕ e gymnospermӕ.
Le angiospermӕ o latifoglie (piante dalle foglie larghe) sono piante che hanno un sistema riproduttivo complesso. Infatti, gli ovuli sono chiusi da un ovario in cui i semi sono raccolti all’interno di un frutto. Possono essere di tipo erbaceo oppure legnose, arbustive o arboree ed avere foglie persistenti oppure caduche. Le foglie, proprio per la loro forma, possono essere molto varie: semplici oppure formate da più foglioline, con i margini lobati, seghettati, dentellati, ecc.

Il margine delle foglie

Sono latifoglie ad esempio: il pioppo, l’ontano, la betulla, il nocciolo, il faggio, il castagno, il tiglio, l’acero, il frassino e molti altri.

Le gymnospermӕ o conifere hanno un sistema riproduttivo molto semplice. La caratteristica fondamentale di queste piante è che l’ovulo, da cui si formerà il seme, non è protetto da un ovario, ma è solo appoggiato a una foglia modificata. Ad esempio i pinoli, che sono i semi del pino, sono appoggiati a una squama della pigna e non sono racchiusi all’interno del frutto come accade, ad esempio, ai noccioli delle ciliegie.

Pigna e pinoliLe conifere, devono il loro nome alla forma conica dei loro frutti, basti pensare alle pigne appunto. Sono tutte piante legnose (alberi o arbusti), le foglie sono quasi esclusivamente aghiformi, sono piante sempreverdi con l’unica eccezione del larice.

Sono conifere gli abeti, i pini, i larici, i cedri, ecc.

Osservando un albero si nota subito una cosa. Non tutta la pianta è visibile, perché una parte scompare nel terreno. Distingueremo, per cui, una parte SOTTERRANEA, non visibile e una parte AEREA al contrario completamente visibile.

Albero_movie

Scendendo più nello specifico, possiamo individuare nell’albero 3 differenti parti:

Albero3parti_movie

Scomposizione dell’Albero

Nella parte sotterranea, troviamo le radici. Queste hanno una duplice funzione:

nutrizionale – assorbendo dal terreno le sostanze necessarie e l’acqua che poi, trasportate da un sistema efficientissimo, giungono alle foglie e ai rami più alti.

strutturale – sostegno della pianta; affondando in profondità nel terreno, realizzano un sistema di fondazioni, capace di reggere carichi notevolissimi quali le sollecitazioni dovute al vento o al peso stesso dell’albero.

Nella parte aerea, troviamo invece, il fusto e la chioma.

Il fusto ha una funzione portante come per noi lo è lo scheletro. Può variare di forma come di altezza, ed è costituito da un insieme di tessuti protettivi, di sostegno e conduttori. Il tronco è di legno, tessuto formato da fibre di cellulosa saldate fortemente tra di loro da una sostanza chiamata lignina.

Approfondisco: la Cellulosa si presenta come un materiale fibroso di colore bianco presente all’interno delle piante tenuta insieme dalla lignina (dal latino lignum=legno).

Cellulosa

Il fusto sostiene i rami e le foglie ed è costituito da un insieme di strati che assolvono a differenti funzioni. Vediamo quali sono questi strati e quali le loro funzioni:

stuttura-del-legno

Strati del tronco

  • Corteccia – è il vestito dell’albero, o meglio la corazza protettiva per gli strati più interni. E’ costituita da cellule morte spinte all’esterno dalle nuove cellule che si formano nel libro.
  • Libro – è la parte più esterna del tronco ed è anche lo strato in cui scorre, dall’alto verso il basso, la linfa elaborata attraverso la fotosintesi clorofilliana dalle foglie.
  • Cambio – è la parte fondamentale di una pianta, perché l’unica in grado di generare tessuti nuovi; ne produce di due tipi, uno verso l’esterno, ossia verso il libro, chiamato floema, ed uno verso l’interno, ossia verso la parte legnosa del tronco, chiamato xilema.
Età albero

Calcolo dell’età di un Albero

Il cambio ha un’attività periodica legata a fattori esterni (stagioni) e interni (ormonali). Questa periodicità nella crescita, genera i caratteristici anelli di accrescimento che rappresentano l’età di una pianta. Nelle zone calde, in cui il cambio stagionale non avviene, tali anelli non si evidenziano a causa di una attività cambiale continuativa (in pratica la pianta cresce sempre durante tutto l’anno). 

  • Alburno – è lo strato più esterno del durame, costituito da cellule vive che hanno lo scopo di trasportare la linfa dalle radici alle foglie.
  • Durame – è la parte più interna del tronco ed è costituita da tessuti lignificati, le cui cellule sono oramai morte. Presenta un colore più scuro ed è la parte migliore da utilizzare nell’industria mobiliera.
  • Midollo – è la parte più interna del tronco e assolve alla funzione nutritiva nei primi anni di vita della pianta. Con il passare del tempo lignifica diventando parte del durame e viene sostituito nella sua funzione dall’alburno.

La chioma è il complesso di rami e foglie che caratterizzano la parte alte delle piante. Può assumere differenti forme a seconda delle caratteristiche genetiche di ciascuna specie o in base ad operazioni esterne, quali potatura.

 TORNA ALL’INDICE

IL NUTRIMENTO (La Linfa)

L’albero ottiene nutrimento attraverso la linfa che risale dalle radici immerse nel terreno fino alla parte sommitale della pianta. La linfa altro non è che una soluzione di ioni inorganici e piccole molecole di sali minerali che vengono assorbite dalla pianta attraverso quegli organi contenuti nelle radici che si chiamano peli radicali. Ma il percorso dell’acqua e solo all’inizio, perché partendo dal basso della pianta deve raggiungere altezze in alcuni casi incredibili (vedi le sequoie americane alte più di 100 m). Come fa la natura a spingere l’acqua contro gravità fino a queste altezze? Il fenomeno avviene in tre differenti modi contemporaneamente. Per pressione radicale, capillarità e traspirazione. L’azione dei tre modi avviene sinergicamente: la pressione radicale e la capillarità spingono l’acqua dal basso, mentre la traspirazione la tira su dall’alto.

Risalita linfa

Percorso della linfa dalle radici alla chioma

Approfondisco: la Pressione Radicale o Osmosi,  è quel fenomeno per cui tra due liquidi di uguale composizione ma con densità diversa, separati da una membrana attraversabile, si genera una differenza di concentrazione. Nel caso della pianta si genera una differenza di pressione tra i sali nel terreno e sali maggiormente concentrati all’interno della pianta generando in questo modo quella che viene definita “pressione radicale” che è in grado di spingere l’acqua a grosse altezze.

Approfondisco: la Capillarità è quando un liquido scorre verso l’alto a causa della forza di adesione delle molecole in un condotto molto stretto. Nella pianta, a causa della dimensione microscopica dei condotti xilematici che trasportano l’acqua al suo interno, questo fenomeno è molto evidente. In pratica, esiste una forza di adesione tra le molecole d’acqua e le pareti del condotto e una forza di coesione tra le molecole dell’acqua. A causa della dimensione ridottissima del condotto, la forza di adesione supera quella di coesione per cui l’acqua risale.

Approfondisco: la Traspirazione è un fenomeno naturale che dipende dalla natura e dimensione della chioma e dall’intensità del calore solare. L’acqua, per effetto del calore, passa dallo stato liquido a quello di vapore. La perdita di quest’acqua per evaporazione, genera all’interno dei capillari in cui scorre la linfa, una depressione di alcune atmosfere che aspira l’acqua verso l’alto consentendole di superare le grandi altezze degli alberi.

 TORNA ALL’INDICE

MAPPA CONCETTUALE DELL’ARGOMENTO

 TORNA ALL’INDICE

APPROFONDISCI CON I VIDEO
STRUTTURA DELL’ALBERO Video 2
Durata: 1:04 Durata: 0:00
SCOPRI GLI ALTRI VIDEO SUL LEGNO

 TORNA ALL’INDICE

Nov 122013
 
Questo argomento è anche in versione: IO STUDIO Arrow IoSTUDIO

In natura, le piante vengono classificate in due gruppi ben distinti, proprio in virtù delle loro differenti caratteristiche riproduttive. Le piante appartengono quindi a due grandi famiglie conosciute con i nomi scientifici di angiospermӕ e gymnospermӕ.
Le angiospermӕ sono piante più evolute rispetto alle gymnospermӕ perché hanno un sistema riproduttivo più complesso. Infatti, la parola angiospermӕ significa pianta con gli ovuli chiusi da un ovario in cui i semi sono raccolti all’interno di un frutto. All’interno di questo gruppo ritroviamo le piante che sono comunemente chiamate LATIFOGLIE, ossia piante che hanno le foglie larghe in contrapposizione con le gymnospermӕ che hanno in genere foglie aghiformi.

LATIFOGLIE

Le latifoglie possono essere piante di tipo erbaceo oppure legnose, piante arbustive o arboree ed avere foglie persistenti oppure caduche. Le foglie, proprio per la loro forma, possono essere molto varie: semplici oppure formate da più foglioline, con i margini lobati, seghettati, dentellati, ecc.

foglie

Le latifoglie comprendono al loro interno un vasto numero di alberi presenti natura. Tra questi troviamo il pioppo, l’ontano, la betulla, il nocciolo, il faggio, il castagno, il tiglio, l’acero, il frassino e molti altri.

CONIFERE

Abeter03

Le conifere, si differenziano dalle latifoglie per un sistema riproduttivo molto più semplice e in qualche modo arcaico. Infatti, questo tipo di piante è l’unico gruppo superstite di quelle molto diffuse nell’era paleozoica, che prendevano il nome di Pinofite. La caratteristica fondamentale di queste piante è che l’ovulo, da cui si formerà il seme, non è protetto da un ovario, ma è solo appoggiato a una foglia modificata. Se osserviamo ad esempio i pinoli, che sono i semi del pino, questi sono semplicemente appoggiati a una squama della pigna e non sono racchiusi all’interno del frutto come accade, ad esempio, ai noccioli delle ciliegie.

Pigna e pinoliLe conifere, devono il loro nome alla forma dei loro frutti, basti pensare alle pigne appunto. Le conifere sono tutte piante legnose (alberi o arbusti), le foglie sono quasi esclusivamente aghiformi, sono piante sempreverdi con l’unica eccezione del larice. I frutti sono, come detto, legnosi ed aventi forma conica o tondeggiante.

La famiglia delle conifere comprende gli abeti, i pini, i larici, i cedri, ecc.

http://www.incendiboschivi.org

Articoli1

Dic 132011
 
IL LEGNO#3 (I PANNELLI DI LEGNO)
Indice Argomenti
1 CHE COS’È UN PANNELLO
2 TIPI DI PANNELLO
3 MAPPA CONCETTUALE DELL’ARGOMENTO
4 APPROFONDISCI CON I VIDEO
Lezioni Precedenti sul Legno
#1 IL LEGNO (L’ALBERO) 
#2 IL LEGNO (IL CICLO DI LAVORAZIONE) argomento ancora non attivo

CHE COS’È UN PANNELLO?

Pannelli

Un pannello di legno è un prodotto composto da elementi primari derivanti dalle diverse tecniche di trasformazione del legno, di spessore variabile. Gli elementi primari più utilizzati sono: segato, sfogliato, tranciato, particella e fibra. Utilizzando questi elementi, è possibile comporre e creare prodotti diversi con caratteristiche e prestazioni differenziate che prendono appunto il nome di PANNELLI DI LEGNO.

Il motivo per cui conviene utilizzare pannelli al posto del legno massello è dovuto all’estrema variabilità della forma e delle dimensioni dei tronchi ricavabili dagli alberi. Disporre di superfici ampie di legno senza giunzioni e difetti non è sempre possibile; per questo i tecnici del legno si sono orientati alla fabbricazione di pannelli di legno dalle dimensioni standard.
Inoltre, la progressiva diminuzione delle risorse lignee ha obbligato sempre più i tecnici a studiare nuove forme di ottimizzazione del legname, sfruttando al massimo anche quella parte di legno precedentemente considerata scarto e quindi non utilizzabile. Da qui è nata la produzione di pannelli di fibre e di particelle e questo ha sostanzialmente modificato il ciclo produttivo del legname. L’attività che, era propriamente artigianale è diventata un’attività prettamente industriale. Per questo motivo, l’industria del pannello oggi in Italia, come negli altri paesi europei, ha acquistato una grande importanza soprattutto nel campo del mobile.

 TORNA ALL’INDICE

TIPI DI PANNELLO

La produzione si è sempre più articolata ed oggi si contano diversi tipi di pannello. Di seguito una raccolta in ordine alfabetico di queste soluzioni che, non vuole essere ne esaustiva ne definitiva, ma semplicemente un’indagine conoscitiva e un approfondimento didattico:

COMPENSATO

Costituito da tre sfogliati disposti con fibre perpendicolari tra loro per uno spessore totale di circa 3mm. La disposizione delle fibre in senso ortogonale, serve a conferire al pannello maggiore resistenza, “compensando” appunto le carenze in una direzione, intrecciando le fibre.

MULTISTRATO

È costituito da almeno 5 sfogliati disposti con le fibre perpendicolari tra loro ed incollati con collanti ureici o fenolici. Lo spessore varia da 5 a 50 mm e le specie legnose più utilizzate sono il Pioppo e la Betulla per quelli d’uso comune, e faggio, rovere, teak, mogano ed altre specie legnose esotiche per quelli speciali. Garantisce buone prestazioni meccaniche, la stabilità è discreta, la lavorabilità ottima e gli impieghi molteplici.

TAMBURATO

Pannello costituito da struttura perimetrale in listelli di Abete o Pioppo, inserto centrale in cartone alveolare (bugno) o losanghe di legno e superfici in compensato o pannello di particelle del tipo sottile variamente placcate e rifinite. La sua leggerezza, l’elevata stabilità e la notevole lavorabilità dei bordi fanno del tamburato uno dei semilavorati più utilizzati per strutture portanti di arredi (spalle, fianchi, tops, mensole, ripiani, ed ante di grandi dimensioni).

TRUCIOLARE

È spesso usato impropriamente per definire il pannello di particelle. A differenza di questo, è costituito da grossi trucioli disposti disomogeneamente per per tutto lo spessore. È utilizzato per elementi non in vista e non sottoposti a carichi e per sottopavimentazioni come materiale isolante.

M.D.F.

Medium Density Fiberboard, pannello di fibre di media densità composto da piccolissime e regolari fibre di legno (soprattutto latifoglie), disposte uniformemente ed omogeneamente su tutto lo spessore, ed incollate con specifiche resine sintetiche (Ureiche o Fenoliche). La densità è media, è lavorabile nelle tre direzioni compresa la tornitura e l’intaglio. Grazie alla sua superficie compatta e omogenea è ideale per placcare superfici da laccare. Lo spessore varia da 3 a 50 mm. Le sue proprietà meccaniche sono scarse e andrebbe evitato per parti strutturali sollecitate (strutture di librerie ecc.).

BILAMINATO

Pannello con le due superfici ricoperte da sottili foglie di laminato plastico.

COMPENSATO CURVATO

Compensato-curvatoCostituito da sfogliati o tranciati umidificati e disposti su controsagome che, tramite l’azione del calore, si curvano prendendo la forma della sagoma stessa. L’utilizzo più comune sono le scocche di poltrone e sedie. Le specie impiegate sono il Pioppo la Betulla e il Frassino.

COMPENSATO MARINO

Multistrato composto da sfogliati incollati con colle ad alta resistenza all’acqua, alle temperature e agli sbalzi termici. Lo spessore varia da 3 a 40 mm e gli impieghi sono soprattutto quelli della nautica.

CONTROPLACCATO

Qualsiasi tipo di pannello a base legno con le due superfici rivestite da tranciati o precomposti decorativi. Garantisce ottime doti di stabilità e buone resistenze meccaniche.

FIBRA

Tradizionalmente noto con i nomi commerciali Faesite, Masonite e Ledorex; è composto da fibre di legno ottenute mediante sfibrature con procedimento ad umido. Si suddividono in: Compressi e non Compressi. I primi, molto compatti e pesanti con spessore massimo di 8-10 mm.

LAMELLARE MASSICCIO

Pannello composto da molteplici listelli di legno massello di ugual larghezza e spessore ma di lunghezza diversa, incollati tra loro e uniti per testa con particolari giunzioni a pettine. Lo spessore è variabile da 10 a 55 m

LISTELLARE O PANIFORTE

È costituito da una parte strutturale formata da listelli di abete o altri legni dolci rivestita sulle due facce da compensato o pannello di fibra e solitamente controplaccato con impiallacciature o MDF. Ottimo per strutture portanti di mobili.

NOBILITATO

È solitamente costituito da un supporto di pannello di particelle o di fibra con una o ambo le superfici ricoperte da carte melaminiche. Le prestazioni d’uso sono sufficienti ed è solitamente impiegato per ripiani ed arredi di non particolare pregio. Le carte del rivestimento riproducono anche le venature dei legni maggiormente utilizzati nell’arredamento.

O.S.B.

Orientated Structural Board è costituito da sottili strisce di legno tenero aventi ugual spessore e diversa lunghezza e larghezza, disposte in modo da formare diversi strati incrociati tra loro.

PARTICELLE

Pannelli-di-particelleÈ ottenuto pressando una determinata quantità di particelle (solitamente pioppo) miscelate con opportune colle sintetiche (ureiche o fenoliche). In commercio se ne trovano di svariati tipi:

Omogeneo – Costituito da particelle sottilissime disposte uniformemente ed omogeneamente per tutto lo spessore.
A Granulometria Progressiva – Particelle sottilissime per le superfici e di media e grossa granulometria per lo stato centrale.

Stratificato – Sullo spessore sono evidenti tre o cinque strati di particelle. Quelle superficiali sono finissime ed omogenee, quelle degli strati mediani più grossolane.

In tutti i tipi, lo spessore varia da 3 a 50 mm e in funzione del tipo di incollaggio possono essere utilizzati sia per esterni che per interni. Si presta molto bene per ottenere i pannelli nobilitati. Vista la particolare composizione, non devono essere confusi con i più grossolani truciolati.

TORNA ALL’INDICE

MAPPA CONCETTUALE DELL’ARGOMENTO

TORNA ALL’INDICE

APPROFONDISCI CON I VIDEO
L’ABBATTIMENTO SRAMATURA E DEPEZZATURA
Durata: 4:49 Durata: 4:17
DA TRONCO A TRAVE IL CICLO DEL RICICLO: LEGNO
Durata: 4:45 Durata: 1:12
SCOPRI TUTTI GLI ALTRI VIDEO SUL LEGNO

TORNA ALL’INDICE

Gli alti costi economici e soprattutto quelli in termini ambientali nello sfruttamento del legno per necessità edilizie e di arredo, hanno messo in crisi un sistema quale quello del mobile. Gli esperti del settore, consci dell’improponibilità di un processo industriale che, cozzava violentemente con necessità ambientali e ritmi biologici della natura, hanno dovuto rivedere profondamente questo processo. Nuove tecnologie e procedure, hanno consentito di realizzare, anche attraverso quelli che venivano considerati scarti, nuovi prodotti con caratteristiche estetiche, meccaniche e tecnologiche pari a quelle del legno massello. Nasce così l’industria del Pannello che ha rivoluzionato il modo di fare mobili, ponendo grande attenzione alla natura e consentendo di abbassare notevolmente i costi senza perdere in qualità.

Prof. Davide Betto

ANCHE NOI SCRITTORI
Alunno/i autore/i dell’articolo:
ARCIFA GIULIO-LEONTINI ALESSANDRO-PARRINELLO ROBERTA-URSINO CAMILLA
Classe e Anno: Argomento di Riferimento:
Prima D – 2011/12 LEGNO